Matching Words and Knowledge Graph Entities with Meta-Embeddings

Matching Words and Knowledge Graph Entities
with Meta-Embeddings

Damien Sileo!', Camille Pradel', Guillermo Eschegoye?, Anselmo Pens?, Arantxa Otgi?, Jan
Milan Driu®, Mark Cielebak®, Ander Barena®, et Eneko Agirre?

ISynapse Développement, Toulouse
2Universidad Nacional de Educacién a Distanca, Madrid
3Zurich University of Applied Scienes, Zurich
1IXA NLP Group, University of the Basque Country, Donostia

31 mai 2019

Résumé

Word vectors are a key component for matching dis-
tinct textual units semantically. However, they are not
directly applicable for matching text with structured
data, for which graph embeddings exist. In this work,
we propose a flexible method in order to map the repre-
sentation of graph embeddings to word embeddings re-
presentation. Thus, we can improve word embeddings
with a weighted average with mapped graph embed-
dings. We evaluate our models on the task of matching
natural language questions and SPARQL queries, and
significantly improve queries matching accuracy. We
also evaluate word meta-embeddings intrinsically and
show improvements over previous models.

Mots-clef : Question answering, Knowledge Graphs,
Word Embeddings, Graph Embeddings, Meta-
Embedding

1 Introduction

Structured data has become ubiquitous, abundant
and involved in numerous applications. Knowledge
bases like DBpedia, Wikidata, OpenCyc [FEMRI15]
provide large and growing structured resources. They
contain millions of facts represented as triplets such as
(Paris, LOCATED_IN, France). Formal languages such as
SPARQL and scalable endpoint architectures allow effi-
cient queries. However, natural language is more conve-
nient for most users. Translating natural language que-
ries into formal language queries (e.g. SPARQL) has
been a long standing artificial intelligence task. Table
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1 shows an example of a natural language question
with associated SPARQL query. But current systems
are only successful on restricted versions of this task,
e.g. using specific patterns [PHH13, TMDL17].

Since full translation-based systems are not re-
liable, a useful task would be the matching of related
SPARQL requests (either from historical data or from
the output of a translation-based system) according to
their similarity to a natural language question. In this
paper, we tackle the prediction of similarity between
natural language questions and SPARQL requests.
Word embeddings are a key component in many tex-
tual similarity systems and have been used to represent
natural language questions. However, the components
of SPARQL queries are either SPARQL keywords (e.g.
SELECT) or Uniform Ressource Unifiers (URI) (e.g.
http ://dbpedia.org/resource/Stanley_Kubrick ).

There exists pre-computed URI embeddings, but
learning an alignment of the embeddings latent space
is needed for similarity computations, and relying on
task specific manually annotated data is costly. Meta-
embeddings could be used in order to solve this pro-
blem. A meta-embedding is a representation derived
from a set of distinct embeddings (e.g. Word2Vec
and GloVe). Yet, there exists no meta-embedding me-
thod leveraging pretrained knowledge graph embed-
dings and word embeddings. Such meta embedding
could also allow integration of symbolic external know-
ledge for common sense reasoning or information retrie-
val.

Our contributions are as follows :

— A meta-embedding method to align word embed-

dings with graph entities embeddings
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FIGURE 1 — Model architecture for similarity estima-
tion

— Experiments on Natural Language/SPARQL
queries similarity prediction
— Intrinsic evaluation of our meta-embeddings

2 Similarity estimation models

A possible use-case of our method is improvement on
similarity prediction between a natural language ques-
tion and a SPARQL query. In this work, we use a sia-
mese neural network whose architecture is depicted in
the figure 1 for such similarity estimation in a super-
vised setup. We experimented using state of the art
[BSA18| models but they did not perform well, proba-
bly due to the short contexts of queries, as opposed to
the evaluation datasets used in entity linking literature.

We represent the questions/queries with the ave-
rage of its symbols (words/URI) embeddings, com-
posed with a matching function (with a concatena-
tion of hadamard product, absolute difference of in-
put vectors) followed by a feed-forward neural network.
Average-pooling is a simplistic sequence encoding me-
thod but it was shown to be competitive with more
complicated architectures [SWWT18§].

Representing words from natural language questions
is straightforward using word embeddings. By contrast,
there are several ways to represent DBPedia URI (e.g.
http ://dbpedia.org/resource/Stanley_Kubrick ). For
instance, text can be derived from the label for the
URI (e.g Stanley Kubrick) allowing the use of word

embeddings but disregarding the knowledge from the
DBPedia graph.

Pre-computed DBPedia URI embeddings [RP16] can
also be used. They are embeddings computed with the
SkipGram algorithm (used in Word2Vec and Node2Vec
[| ) with DBPedia! graph walks instead of sentences.
Such graph walks encode knowledge about entities. For
example,

(Stanley _Kubrick,
writer,

A _Clockwork_Orange)

is a possible sub-path containing some useful informa-
tion about Stanley Kubrick.

RDF2Vec inherits many properties from Word2Vec
vectors (e.g. a cosine similarity that reflect related-
ness).

In this work, we will compare the use of RDF2Vec
and Word2Vec for URI representation, and propose a
meta-embedding method to combine them.

3 Proposed Meta-Embedding

Word and graph embeddings encode complementary
knowledge, but their latent space need to be aligned
in order to perform similarity computations. Here, we
propose to learn to map the latent space of RDF2Vec
to the space of word embeddings.

To do so, we train a feed-forward neural network fy
in order to predict the word embedding Word2Vec(u)
representation of a given URI u from its URI embed-
ding RDF2Vec(u). More specifically, we optimize # in
the following loss function :

£ =" MSE(Word2Vec(u), fo(RDF2Vec(u))) (1)

ucy

V is the set of training examples, i.e. the set of URIs
where a word in a label matches a word vector. When
several words are found, we use the average of their
embeddings. Figure 2 illustrates this approach.

As fo(RDF2Vec(u)) is trained to lie in the same
space as Word2Vec(u), a weighted average of these re-
presentations can be also used :

Weighted,, (u) = (1—a)Word2Vec(u)+a fo(RDF2Vec(u))
(2)

1. (2016-04 version)
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How many movies did Stanley Kubrick direct ?
SELECT DISTINCT COUNT( ?uri) WHERE
Turi <http ://dbpedia.org/ontology/director> <http ://dbpedia.org/resource/Stanley Kubrick >

questionyy,
querysparqQL

TABLE 1 — Sample from LC-Quad dataset

URI Representation

Cross-Entropy  Accuracy (%)

None (Majority Class Prediction
Word2Vec

gw (RDF2vec)
fo(R2Vec)
Weighted (o = 0.07

5

)

) 0.6931 90.00
0.1262 97.81

0.2595 95.06

0.2610 90.57

0.1189 97.94

TABLE 2 — Test results of different URI embeddings models; bold value denotes the best results Weighted is

defined in equation 2

Y2 (Word2Vec(Stanley) + Word2Vec(Kubrick))

I?

Feed-Forward f,

BD

RDF2Vec(<http://dbpedia.org/resource/Stanley_Kubrick>)

FIGURE 2 — Model architecture for embedding align-
ment

4 Experiments

4.1 Query matching evaluation

We evaluate our models on the LC-QuAD [TMDL17]
dataset which is a collection of 5000 natural language
questions with associated SPARQL queries. 4000 pairs
are used for training and the remaining is used for eva-
luation. For each example, we generate 9 examples of
dissimilar NL/SPARQL queries using random associa-
tions of different queries. This process is done on train
data and test data separately.

To represent natural language questions, we always
use word embeddings from [MGB™18] trained on Com-
monCrawl.

Regarding URI representations, we evaluate several
embeddings :

gw (RDF2Vec) is a linear projection of RDF2Vec em-
bedding. The projection W is initialized randomly and
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learnt during the matching prediction training,.

fo is instanciated with a two hidden layer MLP (hid-
den layer sizes are 200,200) with batch-normalization
and ReLu activation. @ is trained on 6.0M URIS, using
1 epoch and using Adam optimizer [KB15] with de-
fault parameters, using the loss from equation 1. The
pararameters are kept fixed in the matching prediction
training.

For the matching detection training, 10% of training
data is kept aside as validation set in order to determine
the best number of epochs (found to be 8, also using
Adam optimizer).

We performed cross validation on the parameter o.
Figure 3 shows the influence on o on evaluation me-
trics. o = 0 is the same as only using Word2Vec, and
« =1 is equivalent to only using fy(RDF2Vec).
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FIGURE 4 — Influence of o on word similarity pre-
diction evaluation using the weighted combination of
Word2Vec and fg(RDF2Vec). y axis is the pearson cor-
relation improvement over the Word2Vec baseline.
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FIGURE 5 — Influence of o on word similarity pre-
diction evaluation using the weighted combination of
Word2Vec and fy(WordNet2Vec). y axis is the pearson
correlation improvement over the Word2Vec baseline.

4.1.1 Query matching results

Table 2 shows the test results of different methods.
Since accuracies are high, we also report cross entropy
for a more meaningful comparison. Using the word em-
beddings of labels already yields high results. However,
when combined with aligned graph embeddings with
the Weighted method the results are significantly bet-
ter.

4.2 Intrinsic Evaluation

We also evaluate our meta-embeddings intrinsically
with a standard word similarity prediction evaluation :
we use word embeddings to predict cosine similarity
between word pairs, and measure the pearson correla-
tion between cosine similarity and human judgments
from similarity/relatedness prediction datasets. Sim-
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SimLex MEN  MTurk
Word2Vec 51.8 81.7 73.3
WordNet2Vec 52.4 39.8 36.2
CONC 53.6 81.7 73.3
Best Weighted (RDF2Vec) 51.8 81.7 73.6
Best Weighted (WordNet2Vec) 53.6 82.1 74.9

TABLE 3 — Pearson correlation between cosine simi-
larity of embeddings and human judgments for seve-
ral models. We used the best values of o when repor-
ting the score of Weighted models. CONC is a meta-
ensembling baseline (concatenation of emebeddings).

Lex [HRK15| is a similarity judgement dataset (anto-
nyms should have a low rating) while MEN [BTB14]
and MTurk [RAGM11] are relatedness dataset (anto-
nyms can have a high rating).

Once again, we use the Weighted meta-embedding
model from equation 2. We report the improvement
over the Word2Vec baseline according the the value of
of . Figure 5 shows the results over various datasets.
We also performed the same experiment using Word-
Net2Vec [BAKT17] instead of RDF2Vec. WordNet2Vec
is a graph embedding computed using the Wordnet
graph, consisting 285k relations between words, such
as (furniture, is_a, piece_of _furniture)

We used the same experimental setup but perfor-
med 2 epochs when optimizing £. The results of best
Weighted models are reported in table ??7. Our meta-
embeddings are competitive with CONC while having
lower dimensionality (300 vs 1150).

5 Related Work

Several models exist for meta-embedding [YS16]
[MSL17]. However, they use a set of embeddings and a
return a meta-embedding lying in a new latent space,
except [CB18] who shows that meta-embeddings can
be obtained by simply averaging or concatenating a
set of input embeddings.

Retrofitting models [FD.J715, | also improve embed-
dings by leveraging knowledge graphs, in a different
way : they use pre-computed word embeddings and
tune word representations so that they fulfill some
constraints dictated by the knowledge graph.

The most similar approach to ours isf]MLS13] where
embeddings in different languages (e.g. french and en-
glish) are aligned using a translation matrix learn on a
limited size multilingual lexicon.

The specificity of our best model is that it is additive.
With proper cross validation, the weighted version of
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our method can ensure better or equal results.

Another line of work deals with Alignment of know-
ledge from textual data and graph data. It has been
explored with joint learning of embeddings from lan-
guage model and knowledge graph link prediction
[ABMiK18]. However, those methods are less flexible,
and ca not leverage the high quality word embed-
dings trained on massive textual datasets without a
re-training from scratch.

6 Conclusion

We proposed a simple, flexible meta-embedding me-
thod based on word embeddings and labelled graph
embeddings and reported significant improvement on
word representation and SPARQL queries/natural lan-
guage matching. It can be applied to other graphs such
as UMLS [BKF718] for biomedical NLP or social net-
works graphs [LK14]. Other languages can be used as
well. We expect more substantial gains on low resource
languages where corpus sizes are more limited.
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