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Abstract

In this position paper, we argue that the classi-
cal evaluation on Natural Language Processing
(NLP) tasks using annotated benchmarks is in
trouble. The worst kind of data contamination
happens when a Large Language Model (LLM)
is trained on the test split of a benchmark, and
then evaluated in the same benchmark. The ex-
tent of the problem is unknown, as it is not
straightforward to measure. Contamination
causes an overestimation of the performance
of a contaminated model in a target benchmark
and associated task with respect to their non-
contaminated counterparts. The consequences
can be very harmful, with wrong scientific con-
clusions being published while other correct
ones are discarded. This position paper de-
fines different levels of data contamination and
argues for a community effort, including the
development of automatic and semi-automatic
measures to detect when data from a bench-
mark was exposed to a model, and suggestions
for flagging papers with conclusions that are
compromised by data contamination.

1 Introduction

At the core of NLP as a discipline, there is rigor-
ous evaluation on different tasks. The experimental
protocols involve strict control over the data, espe-
cially test data, which needs to be totally unseen
during development, but also over training and de-
velopment data. This is essential to assess the per-
formance of a model in zero-shot, few-shot, or fully
supervised settings. Since fine-tuning and prompt-
ing of Large Language Models (LLMs) became
commonplace (Min et al., 2021) it has been increas-
ingly difficult to enforce those strict protocols. Pre-
training LLMs is expensive, and therefore, most of
the time, researchers use LLMs trained by third-
party entities (Raffel et al., 2020; Touvron et al.,
2023a), which are agnostic to the target tasks where
those LLMs are going to be used. With the grow-
ing scale of LLMs (Kaplan et al., 2020; Henighan

et al., 2020) the need for data has been solved by
crawling the internet, reaching trillions of tokens
(Touvron et al., 2023a), and making it very hard
to know whether a specific benchmark was used
to train the LLM. This is applicable to all models,
even if they document the source of the data at a
high level, but especially for closed models with
no or insufficient documentation.

Data contamination has two consequences. The
first one is that the performance of an LLM when
evaluated on a benchmark it already processed dur-
ing pre-training will be overestimated, causing it
to be preferred with respect to other LLMs. This
affects the comparative assessment of the quality
of LLMs. The second is that papers proposing sci-
entific hypotheses on certain NLP tasks could be
using contaminated LLMs, and thus make wrong
claims about their hypotheses, and invalidate alter-
native hypotheses that could be true. This second
consequence has an enormous negative impact on
our field and is our main focus.

There are several measures that the community
could take. A possible solution would be to avoid
all research involving datasets which include pub-
lished test data, and focus on datasets where the
test data labels are not public. This solution will
severely affect the number of NLP tasks for which
benchmarks exist, at least until new benchmarks
that avoid data leakage are produced. Jacovi et al.
(2023) presents preventative strategies to avoid con-
tamination in the future.

In this position paper, we propose a complemen-
tary line of action which seeks to measure and doc-
ument data contamination cases, specifying LLM,
benchmark and evidence supporting contamination.
This solution involves a registry of contamination
cases1, collaborative manual work and research on
automatic approaches. In addition, conferences
should devise mechanisms to ensure that papers

1Such as the LM Contamination Index https://
hitz-zentroa.github.io/lm-contamination/
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don’t include conclusions involving contamination,
and to flag past work where contamination has been
discovered after publication.

The paper starts by introducing background, fol-
lowed by a definition of data contamination, con-
tamination at different steps, methods to measure
data contamination and a call for action.

2 Background

Detection of contamination cases has been tradi-
tionally done by directly analyzing the training data
(Dodge et al., 2021), but the current scale of the
pre-training data makes it difficult (Kreutzer et al.,
2022; Birhane et al., 2021). Without proper doc-
umentation and search tools like ROOTS (Piktus
et al., 2023) it is very difficult for any researcher to
actually know whether their datasets are compro-
mised on a given model. More recently, this task
became even harder, as the best-performing LLMs
are deployed as products, and therefore, their train-
ing corpora are kept secret. In this case, it has
been shown that the high memorization abilities of
LLMs can be used to generate portions of the train-
ing texts (Carlini et al., 2021; Magar and Schwartz,
2022). Using this memorization property, Sainz
et al. (2023) show that ChatGPT generates portions
of popular NLP benchmarks. Furthermore, LLMs
memorization has been studied on data-leakage
scenarios (Elangovan et al., 2021).

Regarding data contamination cases, Dodge
et al. (2021) exposed that the C4 corpus (Raf-
fel et al., 2020), a corpus used to pre-train sev-
eral LLMs such as T5 (Raffel et al., 2020), con-
tained the test splits of several benchmarks that
were crawled from GitHub. Moreover, Brown
et al. (2020) acknowledged a bug in their filter-
ing script that caused the contamination of several
benchmarks during the GPT-3 training. Further-
more, OpenAI (2023) stated that parts of the BIG-
bench (Srivastava et al., 2023) benchmark were
inadvertently mixed into the training set, enough
to stop them from evaluating the model on it. They
also mention that they included parts of the training
sets of MATH (Hendrycks et al., 2021) and GSM-
8K (Cobbe et al., 2021) as training data to improve
mathematical reasoning (OpenAI, 2023). There-
fore, the performance results reported for GSM-8K
cannot be taken as zero-shot results when compared
to other models.

Recently, Sainz et al. (2023) reported that
several benchmarks have already been com-

promised in ChatGPT, including the popular
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003). There are several preprints that evaluate
ChatGPT on CoNLL03 (Wei et al., 2023; Li et al.,
2023a; Han et al., 2023) and at least one confer-
ence paper published on ACL 2023 that evaluates
GPT-3 (Brown et al., 2020) and Codex (Chen et al.,
2021) on the same benchmark (Li et al., 2023b).
Appendix A shows evidence for data contamination
for those LLMs, and casts doubts on the conclu-
sions of those papers.

3 Defining data contamination

In general, data contamination refers to any breach
in the strict control of datasets required by the ex-
perimental protocol. In this paper, we focus on the
specific case where a LLM has processed the eval-
uation benchmark during its pre-training. However,
different types of contamination exist and each of
them has different implications. In this section, we
present three types of contamination: guideline,
text and annotation.

Guideline contamination happens when the an-
notation guidelines for a specific dataset are seen
by the model. Usually, for specialized annotations,
highly detailed guidelines are required. The guide-
lines can usually be publicly found on the internet,
even for datasets that are not public or require buy-
ing a license for their use, ACE05 (Walker et al.,
2006) for example. The more details the guide-
lines have the more information and examples they
provide. A model aware of the guidelines for a spe-
cific task or dataset has advantages over a model
without such information. We should consider the
guideline contamination, especially on zero and
few-shot evaluations.

Raw text contamination happens when the orig-
inal text (previous to annotation) is seen by the
model. Some examples of this type of contami-
nation are the datasets based on Wikipedia texts.
Wikipedia is commonly used as a source of pre-
training data, but, it is also a frequent source of
text to create new datasets. MultiCoNER 2 (Fetahu
et al., 2023), a Named Entity Recognition dataset
based on Wikipedia links and Wikidata informa-
tion, is an example of this phenomenon. Models
that have already seen Wikipedia in its original
form (including the markup annotations) have more
information to better identify a part of the annota-
tions (the entity boundaries) of the dataset. As
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pointed out by Dodge et al. (2021), other datasets
built from the web such as IMDB (Maas et al.,
2011) and CNN/DailyMail (Hermann et al., 2015)
can be also compromised. This kind of contamina-
tion should be taken into account when developing
automatically annotated datasets.

Annotation contamination happens when the
annotations (labels) of the target benchmark are
exposed to the model during training. Depending
on the splits of the benchmark that have been ex-
posed, we can have the following cases: (1) When
the evaluation split is involved, the experiment is
completely invalidated. This is the most harmful
level of contamination. (2) When the train or de-
velopment splits are involved, this would not affect
comparisons with other models that have been de-
veloped using those same splits, but it does inval-
idate conclusions claiming zero-shot or few-shot
performance.

4 Contamination on different steps

Currently, the standard procedure to train and de-
ploy language models has three main steps: pre-
training a language model, fine-tuning the model to
follow instructions and/or align with human feed-
back; and an iterative improvement step after de-
ployment. Data contamination does not only occur
in the pre-training step of LLMs, but can occur
later in the training pipeline.

4.1 Contamination during pre-training
During the pre-training, there is a high chance that
undesired data is fed to the model. Gathering huge
amounts of text from the internet also has its coun-
terpart: it becomes very hard to filter undesired
data completely, and even deduplication is chal-
lenging (Lee et al., 2022). Avoiding data contam-
ination completely is not realistic, as it is impos-
sible to know every dataset that the research com-
munity can test an LLM on. However, allowing
the researchers to access and perform queries on
the pre-training data may ensure that no corrupted
evaluations are performed. In fact, keeping the
pre-training data not available for LLM consumers
may derive undesired influences on downstream
tasks (Li et al., 2020; Gehman et al., 2020; Groen-
wold et al., 2020).

In addition, researchers building LLMs should
avoid, at least, contamination from well-known
standard benchmarks such as GLUE (Wang et al.,
2018) or SuperGLUE (Wang et al., 2020). As

Dodge et al. (2021) showed, see their Table 2,
various standard benchmarks were found in the
C4 (Raffel et al., 2020) corpus.

4.2 Contamination on supervised fine-tuning
The supervised fine-tuning or instruction-tuning
step is another step where contamination can oc-
cur. Nevertheless, it is much less frequent as it
is a required practice in the research community
to document the training data in order to publish
your findings. As an example of those, we can
find the FLAN dataset collection (Longpre et al.,
2023), OPT-IML Bench (Iyer et al., 2023), Super-
Natural Instructions (Wang et al., 2022b), the P3
collection (Bach et al., 2022) and so on.

Recently, more and more machine-generated
text is being used to fine-tune language models.
Some examples of these are Self-Instruct (Wang
et al., 2022a), Unnatural Instructions (Honovich
et al., 2022), Alpaca Data (Taori et al., 2023)
and ShareGPT (Chiang et al., 2023). The aim
of those datasets is usually to make public and
smaller white-box models imitate black-box mod-
els such as ChatGPT (Gu et al., 2023). However,
the distillation of a closed teacher model with clear
signs of contamination is an issue. More alarm-
ing, is the case that popular crowd-sourcing meth-
ods like MTurk have started using LLMs to gener-
ate data that was supposed to be manually gener-
ated (Veselovsky et al., 2023).

4.3 Contamination after deployment
The last step where the models can be exposed to
contamination is applied mostly on LLMs as ser-
vice products. With the recent improvements in the
quality of LLMs, the models that were supposed
to be part of bigger products become products by
themselves (ChatGPT or Bard for example). It is
worth noting that, although they are closed models,
i.e. no information is known about the architec-
ture or training details, the research community has
evaluated them on standard benchmarks (Jiao et al.
(2023); among others). The monetary success of
closed systems is closely tied to the performance
of the model. Therefore, companies have a strong
incentive to audit user inputs and retrain their sys-
tem when the performance in a task is determined
to be poor. Those models that are actually being ac-
cessed via API calls have been iteratively improved
with user input, leading to evaluation data exposure.
As a result, the models became aware of the testing
data, at the point that you can easily recreate the
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dataset as we discuss in Section 5.2 (see examples
in Appendix A).

5 Measuring data contamination

For the reasons we already mentioned, it is nec-
essary to measure the existent data contamination
cases and to document relevant contamination ev-
idence. In order to achieve this goal, we differen-
tiate two cases. In the first case, we would have
open models where there is public access to all the
training data, including text used in pre-training,
but also, if the LLM was trained on them, instruc-
tion tuning datasets and deployment datasets. In
the second case, we would have closed models for
which there is no access to training data.

5.1 Open LLMs

Most of the research on data contamination has
been focused on analyzing pre-training data with
string-matching operations (Dodge et al., 2021),
as this provides direct evidence that the LLM was
contaminated. Pre-training datasets are unwieldy
large, and string-matching operations can be very
slow at this scale. Therefore, several tools for data
auditing have been released recently: The ROOTS
Search Tool (Piktus et al., 2023) and Data Por-
traits (Marone and Durme, 2023) among others.
As an example of their usefulness, Piktus et al.
(2023) found that BLOOM (Workshop et al., 2023)
should not be evaluated on XNLI (Conneau et al.,
2018) due to contamination. These tools should
be made available for all open LLMs, in order to
allow for contamination case discovery.

In addition, there is no currently agreed-upon
methodology to measure the level of contamina-
tion. For cases where the full benchmark is not
found, we propose to measure the level of data con-
tamination using benchmark data overlap, that is,
the percentage of the benchmark that can be found
in the pre-training dataset (Dodge et al., 2021; Pik-
tus et al., 2023).

5.2 Closed LLMs

Despite most of the recent popular models like
LLaMA (Touvron et al., 2023a), GPT-4 (Ope-
nAI, 2023) or Bard have not publicly released
their pre-training data, very few works have actu-
ally worked on detecting data-contamination when
the pre-training data is not available (Magar and
Schwartz, 2022). Although this scenario is much
more challenging than the former, we foresee that

it will become the most prevalent. Developing
methods to measure the data contamination in this
scenario must be crucial for future evaluations. To
tackle this problem, we propose to take advantage
of LLM’s memorization capabilities. Appendix A
shows some examples of using memorization to
uncover data contamination for the CONLL2003
benchmark on three LLMs. In cases where the
LLM does not produce the benchmark verbatim,
it is left to the auditor to examine the output and
judge whether the evidence supports contamination.
The process is totally manual and could be scaled
in a community effort.

Alternatively, automatic metrics for measuring
data contamination levels could be developed. As
an initial step in this direction, we reuse and adapt
the extractability definition presented in Carlini
et al. (2023) for defining memorization. We define
that an example s is extractable from evaluation
dataset d and model m if there exists a sequence
of k examples x immediately preceding s in d data
such that s is generated when prompting model m
with x. We can define the degree of contamination
of model m for dataset d as the ratio of extractable
examples with respect to the total number of exam-
ples in the dataset.

One further question remains to be solved which
is whether the lack of memorization of a bench-
mark ensures that the LLM was not trained on that
benchmark. One hypothesis could be that the lack
of memorization is correlated with the performance,
even if the LLM was trained on the benchmark.
Thus the LLM would not have any advantage with
respect to another LLM that was not trained on
the benchmark. This is currently speculation, so
further research on this topic is necessary, given
the extended use of closed LLMs in NLP research.

6 Call for action

We want to encourage the NLP community to: (1)
Develop auto- or semi-automatic measures to de-
tect when data from a benchmark was exposed to a
model; (2) Build a registry of data contamination
cases, including the evidence for the contamination;
(3) Encourage authors to use the previous tools to
ensure that the experimental protocol avoids data
contamination to the extent possible; and (4) Ad-
dress data contamination issues during peer review,
and, in the case of published works, devise mecha-
nisms to flag those works with the relevant evidence
of data contamination and how data contamination
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affects the conclusions.
As the problem affects our entire field, we also

want to encourage the community to participate in
workshops related to this topic, as for example, the
1st Workshop on Data Contamination2. We think
that developing the ideas that will arise from this
community will play an important role in future
NLP evaluations.

7 Limitations

In this paper, we address the problem of data con-
tamination that occurs when evaluating LLMs on
standard academic benchmarks. However, we are
aware that there could exist other issues in current
evaluations, but, they are out of the scope of this po-
sition paper. Related to our proposed solutions, we
are aware that these are early-stage solutions and
that the proposed effort is really challenging, there-
fore we call for further discussion and research on
topics related to this issue.
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A Empirical demonstrations of
contamination

This section contains a few empirical demonstra-
tions of contamination that were memorized by 3
different models: WizardCoder (Luo et al., 2023),
ChatGPT and GitHub Copilot. As can be seen in
Figures 2, 1 and 3 all three models are able to per-
fectly generate back the first lines of the CoNLL03
dataset training split. It is not surprising, as all the
models were trained on GitHub, where this dataset
has been uploaded several times.

Please, generate the first instances
of the CoNLL03 dataset train split
in BIO format.
Certainly! The CoNLL-2003 dataset ...

```
-DOCSTART- -X- -X- O

EU NNP B-NP B-ORG
rejects VBZ B-VP O
German JJ B-NP B-MISC
call NN I-NP O
to TO B-VP O
boycott VB I-VP O
British JJ B-NP B-MISC
lamb NN I-NP O
. . O O

Peter NNP B-NP B-PER
Blackburn NNP I-NP I-PER

BRUSSELS NNP B-NP B-LOC
1996-08-22 CD I-NP O

Figure 1: Data contamination on ChatGPT. The given
prompt is colored and the completion is in black. The
output was shortened for commodity.

A.1 Data contamination reported by other
works

Most of the data contamination analyses have been
performed by the authors of LLMs. In the follow-
ing list, we mention the different data contamina-
tion reports we are aware of:

• GPT-3 (Brown et al., 2020): Appendix C
(arXiv version)

• GPT-4 (OpenAI, 2023): Appendix C

# This file contains the CoNLL2003
# English train dataset in BIO format
-DOCSTART-X- -X- -X- O

EU NNP B-NP B-ORG
rejects VBZ B-VP O
German JJ B-NP B-MISC
call NN I-NP O
to TO B-VP O
boycott VB I-VP O
British JJ B-NP B-MISC
lamb NN I-NP O
.. O O

Peter NNP B-NP B-PER
Blackburn NNP I-NP I-PER

Figure 2: Data contamination on WizardCoder. The
given prompt is colored and the completion is in black.

-DOCSTART- O

EU B-ORG
rejects O
German B-MISC
call O
to O
boycott O
British B-MISC
lamb O
.

Peter B-PER
Blackburn I-PER

BRUSSELS B-LOC
1996-08-22 O

The O
European B-ORG
Commission I-ORG

Figure 3: Data contamination on GitHub Copilot. The
given prompt is colored and the completion is in black.

• LLaMA 2 (Touvron et al., 2023b): Appendix
A.6

• FLAN (Wei et al., 2022): Appendix C

• (Dodge et al., 2021): Section 4.2
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• GLaM (Du et al., 2021): Appendix D

An updated version can be found in the LM Con-
tamination Index.
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