
AUTOMATIC LOGICAL FORMS IMPROVE FIDELITY IN
TABLE-TO-TEXT GENERATION

Iñigo Alonso, Eneko Agirre
HiTZ Basque Center for Language Technology - Ixa NLP Group
University of the Basque Country UPV/EHU
{inigoborja.alonso,e.agirre}@ehu.eus

ABSTRACT

Table-to-text systems generate natural language statements from structured data
like tables. While end-to-end techniques suffer from low factual correctness (fi-
delity), a previous study reported gains when using manual logical forms (LF) that
represent the selected content and the semantics of the target text. Given the man-
ual step, it was not clear whether automatic LFs would be effective, or whether the
improvement came from content selection alone. We present T lT which, given a
table and a selection of the content, first produces LFs and then the textual state-
ment. We show for the first time that automatic LFs improve quality, with an
increase in fidelity of 30 points over a comparable system not using LFs. Our ex-
periments allow to quantify the remaining challenges for high factual correctness,
with automatic selection of content coming first, followed by better Logic-to-Text
generation and, to a lesser extent, better Table-to-Logic parsing.

1 INTRODUCTION

Data-to-text generation is the task of taking non-linguistic structured input such as tables, knowledge
bases, tuples, or graphs, and automatically produce factually correct1 textual descriptions of the
contents of the input (Reiter & Dale, 1997; Covington, 2001; Gatt & Krahmer, 2018). Note that the
task is somehow underspecified: for the same table many textual descriptions are correct, each one
focusing on a selection of the contents. This makes the use of manual evaluation like fidelity key to
measure quality.

Recent Data-to-Text techniques (Chen et al., 2020a;c; Aghajanyan et al., 2022; Kasner & Dusek,
2022) leverage the performance of large-scale pre-trained models (Devlin et al., 2019), with signifi-
cant performance gains.

However, end-to-end systems struggle to produce high-fidelity statements. As a result, Chen et al.
(2020c) propose to reformulate Data-to-Text as a Logic-to-Text problem focusing on tables, al-
though the technique can be applied to other structured inputs. The input to the language realization
module is a logical representation of the semantics of the target text along with the table informa-
tion. The authors report an increase in factual correctness from 20% to 82%, compared to a system
not using LFs. Note that the manually produced LFs include, implicitly, a selection of the contents
to be used in the description. The authors left two open problems: Firstly, the improvement could
come from the implicit content selection alone, casting doubts about the actual contribution of LFs.
Secondly, it is not clear whether a system using automatic LFs would be as effective.

In this work, we present T lT (short from Table-to-Logic-to-Text), a two-step model that produces
descriptions by automatically generating LFs and then producing the text from those LFs. Our model
allows Table-to-Text generation systems to leverage the advantages of using LFs without requiring

1We use factual correctness and fidelity indistinctly.

1

ar
X

iv
:2

31
0.

17
27

9v
1

 [
cs

.C
L

]
 2

6
O

ct
 2

02
3

manually written LFs. We separate the content selection process from the logical form generation
step, allowing to answer positively to the open questions mentioned above with experiments on the
Logic2Text dataset (Chen et al., 2020c). Although content selection alone improves results, the best
results are obtained using automatic LFs, with noteworthy gains in fidelity compared to a system
not using LFs. Our results allow to estimate the impact in fidelity of the remaining challenges,
with automatic content selection coming first, followed by better Logic-to-Text and to a lesser extent
Table-to-Logic. We also provide qualitative analysis of each step.

All code, models and derived data are public 2.

2 LOGICAL FORMS

The LFs used in this work are tree-structured logical representations of the semantics of a table-
related statement, similar to AMR graphs (Banarescu et al., 2012), and follow the grammar rules
defined by (Chen et al., 2020c). Each rule can be executed against a database, a table in this case,
yielding a result based on the operation it represents. As these graphs represent factual statements,
the root is a boolean operation that should return True. Figure 1 shows an example of a table with
its caption and logical form.

2.1 DATASET

We use the Logic2Text dataset (Chen et al., 2020c). As mentioned in the introduction, Table-to-Text
tasks are underspecified, as there are multiple descriptions about the table that could be factually
correct and relevant. Logic2Text contains 4992 open-domain tables with an average of 2 manually
constructed LFs and textual descriptions per table, making a total of 10753 samples (8566 train,
1092 dev. and 1095 test).

2.2 LOGICAL FORM GRAMMAR

The grammar contains several non-terminals (nodes in the graph, some of which are illustrated in
Fig. 1), as follows:

Stat represents boolean comparative statements such as greater than, less than, equals (shown as eq
in the figure), not equals, most equals or all equals, among others. This is the root of the LF graph.
C refers to an specific column in the input table (attendance and result in the figure).
V is used for specific values, which can be either values explicitly stated in the table (w in the figure)
or arbitrary values used in comparisons or filters (52500 in the figure).

View refers to a set of rows, which are selected according to a filter over all rows. The filters refer
to specific conditions for the values in a specific column, e.g. greater. The figure shows all rows,
which returns all rows, and also filter str eq which returns the rows that contain the substring “w”
in the result column.

N is used for operations that return a numeric value given a view and column as input, such as sums,
averages (shown as avg in the figure), maximum or minimum values, and also counters.

Row is used to select a single row according to maximum or minimum values in a column.

Obj is used for operations that extract values in columns from rows (either views or specific rows).
The most common operations are hop extractors that extract a unique value, for instance str hop first
extracts a string from the first row of a given View.

I is used to select values from ordinal enumerations in N and Row rules, as for instance in order to
select the “the 2nd highest” I would equal to 2.

Please refer to the Appendix C for full details. Note that Stat, View, N, Row and Obj are internal
nodes that constitute the structure of the LF (shown in blue in the figure), while column C, value V
and index I nodes are always leaf nodes.

2https://github.com/AlonsoApp/tlt

2

https://github.com/AlonsoApp/tlt

Caption:
1979 philadelphia eagles season
Table:

opponent result attendance
new york giants w 23-17 67000
atlanta falcons l 14-10 39700

new orleans saints w 26-14 54000
new york giants w 17-13 27500

pittsburgh steelers w 17-14 61500

Statement: In the 1979 philadelphia eagles season
there was an average attendance of 52500 in all
wining games.

LF: eq { avg { filter str eq { all rows ; result ; w } ;
attendance } ; 52500 } = true

eq

52500avg

attendance

all_rows

filter_str_eq

wresult

Grammar node Value nodeColumn node✖

✖

▲

▲

▲

✖

✖

✖ ■

■

■

Content Selection values: 52500, w

Figure 1: Example of a table with its caption, a logical form (in linearized and graph forms), its
corresponding content selection values and the target statement. Note that w in the table stands for
win. More details in the text.

We detected several ambiguities in the original grammar formulation that prevented training a se-
mantic parser that outputs LFs.

The first one affects all functions that deal with strings. In the LF execution engine of Chen et al.
(2020c) the implementation of those functions are divided in two: one that deals with normalization
of numeric and date-like strings, and a strict version for other string values. We thus have two
different functions in the grammar: a set for numerical and date-like values and another set for other
string values, represented with the suffix “ str”. The second one deals with an issue of inconsistency
with the hop function, which, given a row, returns the value associated to one of its columns. While
the grammar states that these functions are only performed over Row objects, in 25% of the examples
in the dataset the function is used over a View object, which can contain multiple rows. We defined
a new function hop first for these latter cases.

The grammar in Appendix C contains the new rules that fix the ambiguity issues. We also converted
automatically each LF in the dataset to conform to the unambiguous grammar. The conversion script
is publicly available.

2.3 CONTENT SELECTION

In order to separate the effect of content selection and full LFs, we extracted the values in the LF, so
we can test the performance of all models with and without content selection. The extracted values
include values that are explicitly mentioned in table cells, but also other values present in the LF
that are not explicitly found in the table. The set of these values constitute the additional input to the
systems when using content selection (CS for short), classified as follows:

TAB: Values present in a table cell, verbatim or as a substring of the cell values.

Figure 1 shows an example, where “w” is a substring in several cells. 72.2% of the values are of this
type.

INF: Values not in the table that are inferred, e.g. as a result of an arithmetic operation over values in
the table. For instance 52500 in Figure 1 corresponds to the average over attendance values. 20.8%
of Value nodes are INF.

AUX: Auxiliary values not in the table nor INF that are used in operations, e.g. to be compared to
actual values in cells, as in “All scores are bigger than 5.”. Only 7.1% are of type AUX.

In principle, one could train a separate model to select and produce all necessary content selection
values to be fed into any Table-to-Text model, as follows: 1) Choose some values from table cells,
either full or substring (TAB); 2) Infer some values via operations like average, count or max (INF);
3) Induce values to be used in comparisons (AUX). In order to separate the contribution of content

3

encoded caption encoded table cells value embeddings column embeddings

+ +caption linearized table manual CS values columns

Sketch decoder

encoded table
cells & valuesgrammar rules predefined

indexes
…

…… … …

encoded
columns

Pointer Network

Column nodeGrammar node Value node Index node

Encoder
Decoder

[CLS]

BERT

+

Pointer Network Pointer Network Pointer Network

Figure 2: Table2Logic architecture, with input in the top and output in the bottom. See text for
details.

selection and the generation of LFs, we decided to focus on the use of content selection, and not
yet in producing the actual values. We thus derive these values from the manual gold LFs, and feed
them to the models. The experiments will show that this content selection step is very important,
and that current models fail without it. We leave automatic content selection for further research.

3 GENERATING TEXT VIA LOGICAL FORMS

Our Text-to-Logic-to-Text (T lT) system has two main modules in a pipeline.

Given a table, its caption and, optionally, selected content, Table2Logic generates an LF. With the
same table information, plus the generated LF, Logic2Text produces the statement text.

3.1 TABLE2LOGIC

We frame this model as semantic parsing, adapting the IRNet grammar-based decoder by (Guo et al.,
2019) to LFs. Given a table and corresponding LF in the dataset, the parser needs to produce the
sequence of grammar derivations that leads to the given. More specifically, we follow the implemen-
tation of Valuenet by Brunner & Stockinger (2021), which is a more up to date revision of IRNet.
Both models are NL-to-SQL semantic parsers that generate grammatically correct SQL sentences
based on their descriptions. We adapted the system to produce logical forms instead of SQL.

The architecture of Table2Logic is presented in Figure 2.

We first feed a pre-trained BERT encoder (Devlin et al., 2019) with the concatenation of the follow-
ing table data: the caption text, the table content in linearized form, the column names, and, in some
of our model configurations, a set of content selection values manually extracted from the associated
gold reference LF.

The output embeddings of the CLS token, the caption tokens and the linearized values in the table
are fed into an LSTM decoder (Hochreiter & Schmidhuber, 1997).

At each decoding step, the attention vector of the LSTM is used by four pointer networks (PN)
(Vinyals et al., 2015) that select the next grammar-related actions to be taken. Each of the PNs
accesses the attention vector of the LSTM plus additional information: the grammar PN has access
to grammar information; the value PN uses output embeddings of table cells and other values; the
index PN uses a separate set of embeddings for possible ordinal index values; the column PN uses
column output embeddings.

4

Model Sketch Full
No content selection (T lTnoCS) 15.0 4.9
TAB 42.6 27.3
INF 28.7 11.0
AUX 14.0 6.2
TAB, INF 56.5 39.3
TAB, AUX 44.3 28.6
TAB, INF, AUX 58.5 38.9
TAB, INF, AUX + FCR (T lT) 56.0 46.5

Table 1: Table2Logic: Accuracy (% on dev.) over sketch and full LFs using different subsets of
content selection (CS) and FCR in development. First row for T lTnoCS , last row for T lT , as
introduced in Sect. 5.

With Content Selection

TℓTgold Logic2TextTable
LF text

Table2Logic
(human made)

Without Content Selection

TℓT Logic2Text
Table
LF text

Table2Logic
with CS

Table
CS

Table2Logic Logic2TextTable
LF textTable

T2T textTable2Text with CStextTable2TextTable

Table

Table
CS

Manual CS

Manual CS

Figure 3: Model configurations used in main experiments.

Following (Guo et al., 2019), Table2Logic performs two decoding iterations. In a first iteration,
a sketch LF is generated using the grammar pointer network. The sketch LF consisting only of
grammar related nodes (e.g. those in blue in Fig. 1), where Value, Column and Index nodes are
represented by placeholders that are filled in a second decoding iteration by the corresponding PN.

We follow teacher-based training to calculate the loss for each decoding iteration. In the first iteration
the loss is calculated by accumulating the cross entropy loss for each generated grammar node given
the previous gold reference nodes. The sketch is then used to calculate the cross entropy loss of
generating Value, Column and Index nodes. The weights of the network are updated using the sum
of both loss values.

During inference, we use beam search to produce a set of candidates. In addition, we explore a
False Candidate Rejection (FCR) policy to filter out all LFs in the beam that execute to False, as
they would be factually incorrect. Thus, the candidate LF in the beam that executes to True with
maximum probability would be selected. Section 4 reports experiments with FCR.

3.2 LOGIC2TEXT

For the language realization model we use the top performer in (Chen et al., 2020c), which fine-
tunes GPT-2 Radford et al. (2019) to produce text from tables. Their implementation allows to
produce text from table information alone (caption, linearized table, list of column names) or both
table information and a linearized logical form. See original publication for details.

4 DEVELOPMENT OF TABLE2LOGIC

In order to develop Table2Logic, we checked the effect of content selection, as well as the impact of
rejecting LFs that evaluate to False (FCR) in development data. Accuracy was computed using strict
equality with respect to any of the manual Gold LFs. Both sketch accuracy (using placeholders for
non-grammar nodes) and full accuracy are reported. As mentioned in the introduction, this task is
underspecified, in that multiple LFs which are very different from the gold LFs could be also correct.
Still, the accuracy is a good proxy of quality to discriminate between better and worse models. The
results correspond to the checkpoints, out of 50 epochs, with the best full accuracy on development.

5

We tuned some hyperparameters on development and used default values for the rest (see Appendix
B for details).

Table 1 shows the results for different subsets of content selection values, with the last row reporting
results when FCR is used. Without FCR, the most important set of values are those explicit in the
table (TAB), and the best results correspond to the use of all values, although AUX values do not
seem to help much (in fact, the best non-FCR full results are obtained without using AUX, by a very
small margin). The last row reports a sizeable improvement in accuracy for full LFs when using
FCR, showing that FCR is useful to reject faulty LFs that do not evaluate to True.

Overall, the full accuracy of T lT might seem low, but given that the gold LFs only cover a fraction
of possible LFs they are actually of good quality, as we will see in the next sections.

We also performed an additional ablation experiment where we removed the table information from
the system in the last row (T lT). The sketch and full accuracies dropped (50.3 and 42.7 respec-
tively), showing that access to table information is useful even when content selection is available.

5 EXPERIMENTS

In this section we report the results on text generation using the test split of the Logic2Text dataset.
We first introduce the different models, the automatic evaluation and the manual evaluation.

5.1 MODEL CONFIGURATIONS

The configuration of the different models are shown in Figure 3. All models take as input the table
information, including table caption, linearized table and column headers. In the top row, we include
the upperbound system T lT gold, which takes the table plus the manually produced gold LF as input.
In the middle row we include our system T lT , which is composed by the Table2Logic module and
the Logic2Text module. Both T lT and T lT gold use the same Logic2Text module, but while the first
uses automatically produced LFs, the second uses manual LFs. T lT is evaluated in two variants,
with and without content selection (T lT and T lTnoCS , respectively). Logic2Text uses default
hyperparameters (Chen et al., 2020c).

The bottom row shows our baselines (T2T, short for Table2Text), which generate the text directly
from table information, with and without content selection data. As Logic2Text is based on state-
of-the-art generation (Chen et al., 2020c), and for the sake of comparability, both T2T and T2TnoCS

have the same codebase. That is, T2T uses the same GPT-2 model architecture as in Chen et al.
(2020c) but trained without LFs. Receiving only the linearized table (in case of T2TnoCS) and, in
the case of T2T, the same list of manual CS values as T lT .

5.2 AUTOMATIC EVALUATION

The automatic metrics compare the produced description with the reference descriptions in the
test split. As shown in Table 2, we report the same automatic metrics as in (Chen et al., 2020c),
BLEU-4 (B-4), ROUGE-1, 2, and L (R-1, R-2, and R-L for short), along with two additional met-
rics BERTscore (BERTs) (Zhang et al., 2019) and BARTscore (BARTs) (Yuan et al., 2021) which
can capture the semantic similarity between the ground truth and generation results. The results
show that generation without content selection is poor for both the baseline system and our system
(T2TnoCS and T lTnoCS , respectively). Content selection is key for good results in both kinds of
systems, which improve around 10 points in all metrics when incorporating content selection (T2T
and T lT). Automatic generation of LFs (T lT) allows to improve over the system not using them
(T2T) in at least one point. If T lT had access to correct LFs it would improve 4 points further, as
shown by the T lT gold results. Note that our results for T lT gold are very similar to those reported in
(Chen et al., 2020c), as shown in the last row. We attribute the difference to minor variations in the
model released by the authors.

5.3 HUMAN FIDELITY EVALUATION

Given the cost of human evaluation, we selected three models to manually judge the fidelity of the
produced descriptions: the baseline T2T model, our T lT model and the upperbound with manual

6

Model B-4 R-1 R-2 R-L BERTs BARTs
T2TnoCS 16.8 37.7 19.3 31.6 88.8 -4.04
T lTnoCS 15.6 39.0 18.9 32.2 87.9 -4.03
T2T 26.8 55.2 31.5 45.7 91.9 -2.98
T lT (ours) 27.2 56.0 33.1 47.7 92.0 -2.99
T lT gold 31.7 62.4 38.7 52.8 93.1 -2.65
T lT gold* 31.4* 64.2* 39.5* 54.0* - -

Table 2: Automated metrics for textual descriptions (test). Bottom two rows are upperbounds, as
they use manual LFs. See text for system description. * for results reported in Chen et al. (2020c).
Both BERTs and BARTs correspond to the f1 score. In case of the BARTscore higher is better.

Model Faithful Unfaithful Nonsense

T2TnoCS* 20.2* 79.8* -
T2T 44.9 49.3 5.8
T lT (ours) 75.0 20.3 4.7
T lT gold 82.4 13.51 4.1

Table 3: Manual fidelity results. * for results reported in (Chen et al., 2020c).

LFs, T lT gold. For this, we randomly selected 90 tables from the test set and generated a statement
with each of the three models. In order to have two human judgements per example, we provided
each evaluator with 30 sentences, along with the corresponding table and caption. The evaluators
were asked to select whether the description is true, false or nonsense according to the caption and
the table.This group of evaluators was comprised of eighteen volunteer researchers unrelated to this
project. The evaluation concluded with a strong inter-evaluator agreement of 0.84 Fleiss’ kappa
coefficient (Fleiss, 1971). We discarded examples where there was disagreement.

Table 3 shows the fidelity figures for the three models. After the evaluation, we noticed that the
faithfulness results for T lT gold in our experiment matched the figure reported by Chen et al. (2020c),
so we decided, for completeness, to include in the table their figures for T2TnoCS , which should be
roughly comparable to the other results in the table.

In general, the differences in human fidelity evaluation are much higher than for automatic metrics,
which we attribute to widely recognised issues of automatic metrics when evaluating text generation.
From low to high, the results allow us to estimate the separate contributions of each component:

• Manual content selection improves fidelity in 24 points (T2TnoCS vs. T2T) ;

• Automatic LFs improve an additional 30 points (T2T vs. T lT);

• Manual LFs give 7 points (T lT vs. T lT gold);

• Perfect Logic2Text generation would yield 18 points (T lT gold vs. 100%).

The figures confirm our contribution: it is possible to produce logical forms automatically, and
they allow to greatly improve fidelity, with the largest fidelity improvement in the table, 30 points.
Note that the other improvements are actually gaps which allow us to prioritize the areas for further
research: automatic content selection (24 pt.), better Logic2Text (18 pt.) and better Table2Logic (7
pt.). In the following section we analyse the errors in the two later modules.

6 QUALITATIVE ANALYSIS

We performed a qualitative analysis of failure cases in both Table2Logic and Logic2Text, as well as
examples of factually correct descriptions generated from LFs different from gold LFs.

7

Fr. Total Confusions
Stat 0.38 0.13 greater → less

all equals → most equals
equals → and

C 0.25 0.19 column 3 → column 0
column 1 → column 0

Row 0.16 0.02 row 0 → row 2
row 2 → row 0
row 2 → row 1

View 0.11 0.20 filter greater → filter less
filter greater → filter eq
filter eq → all rows

N 0.05 0.03 sum → avg
avg → sum

Obj 0.03 0.26 str hop → num hop
num hop → str hop

V 0.01 0.16 value 72 → value 73
value 70 → value 71

I 0.01 0.01 1 → 0

Table 4: Table2Logic: Distribution of differing node types (T lT vs. gold LFs). Fr. for frequency of
node type in differing LFs, Total for overall frequency in gold. Rightmost column for most frequent
confusions (T lT → gold).

6.1 TABLE2LOGIC

We automatically compared the LFs generated by T lT in the development set that did not match
their corresponding gold LFs. Note that the produced LFs can be correct even if they do not match
the gold LF. We traverse the LF from left to right and record the first node that is different. Table
4 shows, in decreasing order of frequency, each grammar node type (cf. Section 2.2) with the most
frequent confusions.

The most frequent differences focus on Stat nodes, where a different comparison is often generated.
The next two frequent nodes are column and row selections, where T lT selects different columns
and rows, even if T lT has access to the values in the content selection. The frequency of differences
of these three node types is well above the distribution in gold LFs. The rest of differences are less
frequent, and also focus on generating different comparison or arithmetic operations.

6.2 LOGIC2TEXT

The faithfulness score of descriptions generated from gold LFs (T lT gold) is 82%, so we analysed a
sample of the examples in this 18%. For the sake of space, we include full examples in Appendix D,
which include table, caption, gold LF and generated description. We summarize the errors in three
types:

Comparative arithmetic: Logic2Text miss-represented comparative arithmetic action rules in the
LF in 40% of the cases. This resulted in cases where the output sentence declared that a given value
was smaller than another when the LF stated it was larger. Logic2Text also seem to ignore round
and most modifiers of comparison operations, producing sentences with strict equality and omitting
qualifiers like “roughly” or “most”. The absence of these qualifiers made the produced sentences
factually incorrect.

LF omission: Logic2Text disregarded part of the LF (33% of errors), resulting in omissions that
led to false sentences. Many of these errors involved omitting an entire branch of the LF, leading,
for instance, to sentences wrongly referring to all the instances in the data instead of the subset
described in the LF.

8

LF difference Sentences
Similar structure, se-
mantically equivalent

T lT : In the list of Appalachian regional commission counties,
Schoharie has the highest unemployment rate.
Human: The appalachian county that has the highest unemployment
rate is Schoharie.

Similar structure, se-
mantically different

T lT : Dick Rathmann had a lower rank in 1956 than he did in 1959.
Human: Dick Rathmann completed more laps in the Indianapolis 500
in 1956 than in 1959.

Different structure,
semantically differ-
ent

T lT : Most of the games of the 2005 Houston Astros’ season were
played in the location of arlington.
Human: Arlington was the first location used in the 2005 Houston As-
tros season.

Simpler structure,
more informative

T lT : Aus won 7 events in the 2006 asp world tour.
Human: Seven of the individuals that were the runner up were from
aus.

Table 5: Examples of faithful sentences produced by T lT from intermediate LFs that do not match
the gold LF.

Verbalization: Logic2Text incurred in wrong verbalization and misspellings (27% of cases). For
instance Logic2Text producing a similar but not identical name like in foulisco instead of francisco.

We attribute the errors to the fact that the generator is based on a general Language Model such
as GPT-2. While these language models are excellent in producing fluent text, it seems that, even
after fine-tuning, they have a tendency to produce sentences that do not fully reflect the data in the
input logical form. It also seems that the errors might be explained by the lower frequency of some
operations. The 18% gap, even if it is much lower than the gap for systems that do not use LFs,
together with this analysis, show that there is still room for improvement.

6.3 CAN AN INCORRECT LF PRODUCE A FAITHFUL DESCRIPTION?

The results in Table 1 show that our Table2Logic system has low accuracy when evaluated against
gold logical forms (46%). On the contrary, the results in fidelity for the text generated using those
automatically generated logical forms is very high, 75%, only 7 points lower to the results when
using gold logical forms. This high performance in fidelity for automatic LFs might seem counter-
intuitive, but we need to note that it is possible to generate a correct and faithful LF that is completely
different from the gold logical form, i.e. the system decides to produce a correct LF that focuses on
a different aspect of the information in the table with respect to the gold LF.

In order to check whether this is actually the case, we manually examined the automatic LFs from
T lT that resulted in faithful sentences in the manual evaluation while being “erroneous”, that is,
different from their gold LF references. In all cases, such T lT LFs are correctly formed and faithful,
i.e. even if these LFs where “wrong” according to the strict definition of accuracy, the semantics
they represent are informative and faithful to the source data. Table 5 shows a sample of the output
sentence, with full details including table and LFs in Appendix E.

We categorized the samples as follows. 69% of them share a similar LF structure as their correspond-
ing gold references, but with changes in key Value or Column nodes, making them semantically
different. In 15% of the cases the LF had similar structure, but although there were differences, the
LF was semantically equivalent to the gold LF. The rest of T lT LFs (16%) had a different structure,
and where semantically different from reference counterparts, while still being correct and faithful
to the table.

All in all the quality of LFs and corresponding text produced by T lT for this sample is comparable
to those of the gold LF, and in some cases more concise and informative. This analysis confirms
that the quality of Table2Logic is well over the 46% accuracy estimate, and that it can be improved,
as the produced text lags 7 points behind gold LFs.

9

7 RELATED WORK

Natural Language Generation from structured data is a long-established research line. Over time,
multiple techniques have been developed to solve this task in different ways, such as leveraging the
structural information of the input data (Wiseman et al., 2017; Liu et al., 2018; Puduppully et al.,
2019a; Rebuffel et al., 2020; Chen et al., 2020b), using neural templates (Wiseman et al., 2018; Li
& Wan, 2018) or focusing on content ordering (Sha et al., 2018; Puduppully et al., 2019b; Su et al.,
2021). However, recent techniques (Chen et al., 2020a; Aghajanyan et al., 2022; Kasner & Dusek,
2022) leverage pre-trained language models (Devlin et al., 2019; Radford et al., 2019).

The use of pre-trained language models has allowed for highly fluent outputs, but fidelity is still a big
challenge and focus of recent work. Matsumaru et al. (2020) remove factually incorrect instances
from the training data. Others take control of the decoder by making it attend to the source (Tian
et al., 2019), using re-ranking techniques on it (Harkous et al., 2020) or applying constrains that
incorporates heuristic estimates of future cost (Lu et al., 2021). Other work relys on heuristics such
as surface matching of source and target to control generation (Wang et al., 2020; Shen et al., 2020;
Li & Rush, 2020).

In a complementary approach, Chen et al. (2020c) focus on improving the fidelity of the generated
texts by reformulating Table-to-Text as a Logic-to-Text problem. They incorporate a tree-structured
logical representation of the semantics of the target text, logical forms (LF), along with the table
information. This logical form highly conditions the language realization module to produce the
statement represented in it, greatly improving fidelity. However, the logical forms in this work are
manually produced by humans, highly reducing the applicability of this solution in a real world
scenario. Solving this challenge would allow data-to-text models to leverage the benefits of this
approach, which motivated our research.

Automatically generating LFs requires of techniques capable of producing outputs following a set of
pre-defined grammar rules. This challenge is commonly addressed in many semantic parsing tasks
(Yin & Neubig, 2017; Radhakrishnan et al., 2020). Guo et al. (2019) present IRNet, a NL-to-SQL
semantic parser that generates grammatically correct SQL sentences based on their natural language
descriptions. Valuenet Brunner & Stockinger (2021) introduced a BERT-based encoder (Devlin
et al., 2019). In this work we adapted the grammar-based decoder of Valuenet to produce LFs,
which allowed us to show that we can produce high quality LFs. More recent advances in semantic
parsing, e.g. the use of larger language models (Raffel et al., 2020; BigScience Workshop, 2022;
Zhang et al., 2022), could be easily folded in our system and would further increase the contribution
of LFs.

8 CONCLUSIONS AND FUTURE WORK

We have presented T lT which, given a table and a selection of the content, first produces logical
forms and then the textual statement. We show for the first time that automatic LFs improve results
according to automatic metrics and, especially, manually estimated factual correctness. In addition,
we separately study the contribution of content selection and the formalization of the output as an
LF, showing a higher impact in fidelity of the later. In this paper we focus on tables, but our findings
and software can be easily ported to other structured inputs.

Our analysis allowed us to quantify that content selection would provide the largest boost in per-
formance, followed, to a lesser extent in improved logic-to-text generation, and, finally, improved
table-to-logic generation. We thus plan to focus on automatic content selection, which we think can
be largely learned from user preference patterns found in the training data. We also plan to lever-
age our qualitative analysis to study complementary approaches to improve factual correctness in
logic-to-text.

ACKNOWLEDGEMENTS

This work is partially funded by MCIN/AEI 10.13039/501100011033 and by the European Union
NextGenerationEU/ PRTR, as well as the Basque Government IT1570-22.

10

REFERENCES

Armen Aghajanyan, Dmytro Okhonko, Mike Lewis, Mandar Joshi, Hu Xu, Gargi Ghosh, and Luke
Zettlemoyer. HTLM: Hyper-text pre-training and prompting of language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=P-pPW1nxf1r.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. Abstract meaning representa-
tion (amr) 1.0 specification. In Abstract meaning representation (amr) 1.0 specification, volume
Parsing on Freebase from Question-Answer Pairs. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing. Seattle: ACL, pp. 1533–1544, 2012.

BigScience Workshop. Bloom (revision 4ab0472), 2022. URL https://huggingface.co/
bigscience/bloom.

Ursin Brunner and Kurt Stockinger. Valuenet: A natural language-to-sql system that learns from
database information. In 2021 IEEE 37th International Conference on Data Engineering (ICDE),
pp. 2177–2182, 2021. doi: 10.1109/ICDE51399.2021.00220.

Wenhu Chen, Jianshu Chen, Yu Su, Zhiyu Chen, and William Yang Wang. Logical natural
language generation from open-domain tables. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 7929–7942, Online, July 2020a. Asso-
ciation for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.708. URL https:
//aclanthology.org/2020.acl-main.708.

Wenhu Chen, Yu Su, Xifeng Yan, and William Yang Wang. KGPT: Knowledge-grounded pre-
training for data-to-text generation. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 8635–8648, Online, November 2020b. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.697. URL https:
//aclanthology.org/2020.emnlp-main.697.

Zhiyu Chen, Wenhu Chen, Hanwen Zha, Xiyou Zhou, Yunkai Zhang, Sairam Sundaresan, and
William Yang Wang. Logic2Text: High-fidelity natural language generation from logical forms.
In Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 2096–2111,
Online, November 2020c. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.190. URL https://aclanthology.org/2020.findings-emnlp.
190.

Michael A Covington. Building natural language generation systems. Language, 77(3):611–612,
2001. doi: 10.1353/lan.2001.0146.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological bulletin,
76(5):378, 1971.

Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural language generation: Core
tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65–170, 2018.
doi: 10.1613/jair.5477.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
Towards complex text-to-SQL in cross-domain database with intermediate representation. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp.
4524–4535, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-1444. URL https://aclanthology.org/P19-1444.

11

https://openreview.net/forum?id=P-pPW1nxf1r
https://openreview.net/forum?id=P-pPW1nxf1r
https://huggingface.co/bigscience/bloom
https://huggingface.co/bigscience/bloom
https://aclanthology.org/2020.acl-main.708
https://aclanthology.org/2020.acl-main.708
https://aclanthology.org/2020.emnlp-main.697
https://aclanthology.org/2020.emnlp-main.697
https://aclanthology.org/2020.findings-emnlp.190
https://aclanthology.org/2020.findings-emnlp.190
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/P19-1444

Hamza Harkous, Isabel Groves, and Amir Saffari. Have your text and use it too! end-to-end neural
data-to-text generation with semantic fidelity. In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pp. 2410–2424, Barcelona, Spain (Online), December 2020.
International Committee on Computational Linguistics. doi: 10.18653/v1/2020.coling-main.218.
URL https://aclanthology.org/2020.coling-main.218.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, Nov 1997. ISSN 0899-7667. doi: 10.1162/neco.1997.9.8.1735.

Zdeněk Kasner and Ondrej Dusek. Neural pipeline for zero-shot data-to-text generation. In Pro-
ceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 3914–3932, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.acl-long.271. URL https://aclanthology.org/2022.
acl-long.271.

Liunian Li and Xiaojun Wan. Point precisely: Towards ensuring the precision of data in generated
texts using delayed copy mechanism. In Proceedings of the 27th International Conference on
Computational Linguistics, pp. 1044–1055, Santa Fe, New Mexico, USA, August 2018. Associ-
ation for Computational Linguistics. URL https://aclanthology.org/C18-1089.

Xiang Lisa Li and Alexander Rush. Posterior control of blackbox generation. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2731–2743,
Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.
243. URL https://aclanthology.org/2020.acl-main.243.

Tianyu Liu, Kexiang Wang, Lei Sha, Baobao Chang, and Zhifang Sui. Table-to-text generation by
structure-aware seq2seq learning. In Table-to-text generation by structure-aware seq2seq learn-
ing, volume Proceedings of the AAAI Conference on Artificial Intelligence 32(1), 2018. doi:
10.1609/aaai.v32i1.11925.

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, and Rowan Zellers. Neurologic a* esque decoding: Constrained text
generation with lookahead heuristics. arXiv preprint arXiv:2112.08726, 2021.

Kazuki Matsumaru, Sho Takase, and Naoaki Okazaki. Improving truthfulness of headline genera-
tion. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 1335–1346, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.123. URL https://aclanthology.org/2020.acl-main.123.

Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation with entity modeling.
In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 2023–2035, Florence, Italy, July 2019a. Association for Computational Linguistics. doi:
10.18653/v1/P19-1195. URL https://aclanthology.org/P19-1195.

Ratish Puduppully, Li Dong, and Mirella Lapata. Data-to-text generation with content selection and
planning. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):6908–6915, Jul.
2019b. doi: 10.1609/aaai.v33i01.33016908. URL https://ojs.aaai.org/index.php/
AAAI/article/view/4668.

A Radford, J Wu, R Child, D Luan, and D Amodei. . . . Language models are unsupervised mul-
titask learners. OpenAI Blog, 2019. URL https://d4mucfpksywv.cloudfront.net/
better-language-models/language-models.pdf.

Karthik Radhakrishnan, Arvind Srikantan, and Xi Victoria Lin. ColloQL: Robust text-to-SQL
over search queries. In Proceedings of the First Workshop on Interactive and Executable Se-
mantic Parsing, pp. 34–45, Online, November 2020. Association for Computational Linguis-
tics. doi: 10.18653/v1/2020.intexsempar-1.5. URL https://aclanthology.org/2020.
intexsempar-1.5.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

12

https://aclanthology.org/2020.coling-main.218
https://aclanthology.org/2022.acl-long.271
https://aclanthology.org/2022.acl-long.271
https://aclanthology.org/C18-1089
https://aclanthology.org/2020.acl-main.243
https://aclanthology.org/2020.acl-main.123
https://aclanthology.org/P19-1195
https://ojs.aaai.org/index.php/AAAI/article/view/4668
https://ojs.aaai.org/index.php/AAAI/article/view/4668
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://aclanthology.org/2020.intexsempar-1.5
https://aclanthology.org/2020.intexsempar-1.5
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Clément Rebuffel, Laure Soulier, Geoffrey Scoutheeten, and Patrick Gallinari. A hierarchi-
cal model for data-to-text generation. In A Hierarchical Model for Data-to-Text Genera-
tion, volume European Conference on Information Retrieval, pp. 65–80. Springer, 2020. doi:
10.1007/978-3-030-45439-5 5.

Ehud Reiter and Robert Dale. Building applied natural language generation systems. Natural Lan-
guage Engineering, 3(1):57–87, 1997. doi: 10.1017/S1351324997001502.

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, and Zhifang Sui. Order-
planning neural text generation from structured data. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelli-
gence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelli-
gence, AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Xiaoyu Shen, Ernie Chang, Hui Su, Cheng Niu, and Dietrich Klakow. Neural data-to-text generation
via jointly learning the segmentation and correspondence. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 7155–7165, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.641. URL https:
//aclanthology.org/2020.acl-main.641.

Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier. Plan-then-generate: Con-
trolled data-to-text generation via planning. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 895–909, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.76. URL
https://aclanthology.org/2021.findings-emnlp.76.

Ran Tian, Shashi Narayan, Thibault Sellam, and Ankur P Parikh. Sticking to the facts: Confident
decoding for faithful data-to-text generation. arXiv preprint arXiv:1910.08684, 2019.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/
paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu, and Changyou Chen. Towards faithful neural
table-to-text generation with content-matching constraints. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 1072–1086, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.101. URL https:
//aclanthology.org/2020.acl-main.101.

Sam Wiseman, Stuart Shieber, and Alexander Rush. Challenges in data-to-document generation. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
2253–2263, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.
doi: 10.18653/v1/D17-1239. URL https://aclanthology.org/D17-1239.

Sam Wiseman, Stuart Shieber, and Alexander Rush. Learning neural templates for text generation.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing,
pp. 3174–3187, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1356. URL https://aclanthology.org/D18-1356.

Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code generation.
In The 55th Annual Meeting of the Association for Computational Linguistics (ACL), Vancouver,
Canada, July 2017. URL https://arxiv.org/abs/1704.01696.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text gener-
ation. Advances in Neural Information Processing Systems, 34:27263–27277, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. Opt: Open pre-trained transformer language models, 2022. URL https://arxiv.
org/abs/2205.01068.

13

https://aclanthology.org/2020.acl-main.641
https://aclanthology.org/2020.acl-main.641
https://aclanthology.org/2021.findings-emnlp.76
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://aclanthology.org/2020.acl-main.101
https://aclanthology.org/2020.acl-main.101
https://aclanthology.org/D17-1239
https://aclanthology.org/D18-1356
https://arxiv.org/abs/1704.01696
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

A TRAINING PROCEDURE

All experiments where carried out in a machine with a GPU NVIDIA TITAN Xp 12GB. The average
training runtime for all Table2Logic based models is 19 hours. For the Logic2Text presented models,
it averaged 10 hours. Both Table2Logic and Logic2Text models have a very similar amount of
parameters (117M).

B MODEL HYPER-PARAMETERS

We keep Logic2Text’s hyper-parameters the same as Chen et al. (2020c). We refer the reader to the
paper. Regarding the Table2Logic model in T lT , which is based on Brunner & Stockinger (2021)’s
Valuenet, we changed the grammar and added additional input data, as well as changing the code
accordingly to our use case. We use the same hyper-parameters as stated in the paper, with the
exception of the base learning rate, beam size, number epochs, and gradient clipping. This is the list
of hyper-parameters used by Table2Logic for the model T lT :

Random seed: 90 Attention vector size: 300
Maximum sequence lengthy: 512 Grammar type embedding size: 128
Batch size: 8 Grammar node embedding size: 128
Epochs: 50 Column node embedding size: 300
Base learning rate: 5 ∗ 10−5 Index node embedding size: 300
Connection learning rate: 1 ∗ 10−4 Readout: ’identity’
Transformer learning rate: 2 ∗ 10−5 Column attention: ’affine’
Scheduler gamma: 0.5 Dropout rate: 0.3
ADAM maximum gradient norm: 1.0 Largest index for I nodes: 20
Gradient clipping: 0.1 Include OOV token: True
Loss epoch threshold: 50 Beam size: 2048
Sketch loss weight: 1.0 Max decoding steps: 50
Word embedding size: 300 False Candidate Rejection: True
Size of LSTM hidden states: 300

14

C LOGICAL FORM GRAMMAR

Stat ::= only View | and Stat Stat | greater Obj Obj | less Obj Obj | eq Obj Obj |
str_eq Obj Obj | not_eq Obj Obj | not_str_eq Obj Obj | round_eq Obj Obj |

all_eq View C Obj | all_str_eq View C Obj | all_not_eq View C Obj |
all_str_not_eq View C Obj | all_less View C Obj | all_less_eq View C Obj |

all_greater View C Obj | all_greater_eq View C Obj | most_eq View C Obj |
most_str_eq View C Obj | most_not_eq View C Obj |
most_str_not_eq View C Obj | most_less View C Obj | most_less_eq View C Obj |

most_greater View C Obj | most_greater_eq View C Obj
View ::= all_rows | filter_eq View C Obj | filter_str_eq View C Obj |

filter_not_eq View C Obj | filter_str_not_eq View C Obj |
filter_less View C Obj | filter_greater View C Obj | filter_greater_eq View C Obj |
filter_less_eq View C Obj | filter_all View C

N ::= count View | avg View C | sum View C | max View C | min View C |
nth_max View C I | nth_min View C I

Row ::= argmax View C | argmin View C | nth_argmax View C I | nth_argmin View C I
Obj ::= str_hop Row C | num_hop Row C | str_hop_first View C |

num_hop_first View C | diff Obj Obj | N | V
C ::= column
I ::= index

V ::= value

Table 1: Logical Form Grammar. All disambiguation keywords added to the original logical form grammar are
highlighted in green. Following IRNet’s and Valuenet’s notation, the tokens to the left of the ::= represent all node
types in a logical form. Italic keywords represent the rules each node can represent along with references to columns,
indexes or values for nodes C, I and V. The pipe separates the different rules within a node type.

B Table2Logic training002

In the same fashion as (?), we perform two gen-003

eration iterations. In a first decoding iteration, a004

sketch logical form is generated consisting on only005

grammar related nodes. This sketch contains place-006

holder nodes representing the Value, Column and007

Index nodes that will be generated in a second de-008

coding iteration.009

We follow teacher-based training to calculate010

one loss for each decoding iteration. In the first011

iteration the loss is calculated by accumulating012

the cross entropy loss for each generated gram-013

mar node given the previous gold reference nodes.014

This grammar node based sketch is then used to015

calculate the cross entropy loss of generating Value,016

Column and Index nodes. The sum of both losses017

is then used to update the weights of the network.018

We use different learning rates to update the en-019

coder, decoder and rest of the network connection020

parameters.021

C Model hyperparameters 022

While we change the input values fed to the three 023

variations of Logic2Text in T`T, the hyperparam- 024

eters of this model are kept the same as ?. We refer 025

the reader to the paper. 026

Regarding the Table2Logic model in T`T, 027

which is based on ?, we changed the grammar and 028

added additional input, such as different combi- 029

nations, as well as changing the code accordingly. 030

We use the same hyperparameters as in the paper, 031

except for a small exploration of the base learn- 032

ing rate, beam size (see additional details about 033

beam size below), epochs and gradient clipping. 034

This is the whole list of hyperparameters used by 035

Table2Logic: 036

• Random seed: 90 037

• Maximum sequence lengthy: 512 038

• Batch size: 8 039

• Epochs: 50 040

• Base learning rate: 5 ⇤ 10�5 041

2

Figure 4: The Logical Form Grammar after fixing the ambiguity issues in the original version (Chen
et al., 2020c). We follow the same notation as in IRNet and Valuenet. The tokens to the left of the
::= represent non-terminals (node types in the graph). Tokens in italics represent the possible rules
for each node, with pipes (|) separating the rules. The rules added to the original grammar in order
to fix ambiguity issues are highlighted in green.

D LOGIC2TEXT ERRORS

This section shows examples of error cases where the logic-to-text stage of the pipeline failed to
produce faithful sentences given a gold LF. We include one example for each error type, including
table, caption, gold logical form and generated description. See Section 6.2 for more details.

15

D.1 COMPARATIVE ARITHMETIC

Caption: fil world luge championships 1961

Table:

rank nation gold silver bronze total
1 austria 0 0 3 3
2 italy 1 1 0 2
3 west germany 0 2 0 2
4 poland 1 0 0 1
5 switzerland 1 0 0 1

Logical Form:
and
├── only
│ └── filter_greater
│ ├── 0
│ ├── all_rows
│ └── bronze
└── str_eq
 ├── austria
 └── str_hop_first
 ├── filter_greater
 │ ├── 0
 │ ├── all_rows
 │ └── bronze
 └── nation

T lT sentence: austria was the only country to win 0 bronze medals at the fil world luge championships .

Gold sentence: austria was the only country to have bronze medals in the luge championship in 1961 .

16

D.2 LF OMISSION

Caption: geography of moldova

Table:

land formation area , km square of which currently forests , km square % forests habitat type
northern moldavian hills 4630 476 10.3 % forest steppe
dniester - rāut ridge 2480 363 14.6 % forest steppe
middle prut valley 2930 312 10.6 % forest steppe
bălţi steppe 1920 51 2.7 % steppe
ciuluc - soloneţ hills 1690 169 10.0 % forest steppe
corneşti hills (codru) 4740 1300 27.5 % forest
lower dniester hills 3040 371 12.2 % forest steppe
lower prut valley 1810 144 8.0 % forest steppe
tigheci hills 3550 533 15.0 % forest steppe
bugeac plain 3210 195 6.1 % steppe
part of podolian plateau 1920 175 9.1 % forest steppe
part of eurasian steppe 1920 140 7.3 % steppe

Logical Form:
eq
├── 8
└── count
 └── filter_str_eq
 ├── all_rows
 ├── forest steppe
 └── habitat type

T lT sentence: there are 8 habitats that can be found in moldova .

Gold sentence: 8 land formations are classified with a habitat type of forest steppe .

17

D.3 VERBALIZATION

Caption: seattle supersonics all - time roster

Table:

player nationality jersey number (s) position years from
craig ehlo united states 3 sg 1996 - 1997 washington state
dale ellis united states 3 sg / sf 1986 - 1991 1997 - 1999 tennessee
pervis ellison united states 29 c 2000 louisville
francisco elson netherlands 16 c 2008 california
reggie evans united states 34 , 30 pf 2002 - 2006 iowa
patrick ewing united states 33 center 2000 - 2001 georgetown

Logical Form:

greater
├── num_hop_first
│ ├── filter_str_eq
│ │ ├── all_rows
│ │ ├── francisco elson
│ │ └── player
│ └── years
└── num_hop_first
 ├── filter_str_eq
 │ ├── all_rows
 │ ├── pervis ellison
 │ └── player
 └── years

T lT sentence: foulisco elson played for the supersonics after pervis ellison .

Gold sentence: francisco elson played 8 years later thanpervis ellison .

18

E EXAMPLES OF FAITHFUL T lT SENTENCES WHERE LF IS DIFFERENT TO
GOLD

This section shows examples of automatic LFs from T lT that resulted in faithful sentences in the
manual evaluation while being different from their gold LF references. Each example extends the
information shown in Table 5.

E.1 SIMILAR STRUCTURE, SEMANTICALLY EQUIVALENT

Caption: list of appalachian regional commission counties

Table:

county population unemployment rate market income per capita poverty rate status
allegany 49927 5.8 % 16850 15.5 % - risk
broome 200536 5.0 % 24199 12.8 % transitional
cattaraugus 83955 5.5 % 21285 13.7 % transitional
chautauqua 136409 4.9 % 19622 13.8 % transitional
chemung 91070 5.1 % 22513 13.0 % transitional
chenango 51401 5.5 % 20896 14.4 % transitional
cortland 48599 5.7 % 21134 15.5 % transitional
delaware 48055 4.9 % 21160 12.9 % transitional
otsego 61676 4.9 % 21819 14.9 % transitional
schoharie 31582 6.0 % 23145 11.4 % transitional
schuyler 19224 5.4 % 21042 11.8 % transitional
steuben 98726 5.6 % 28065 13.2 % transitional
tioga 51784 4.8 % 24885 8.4 % transitional

T lT Logical Form:
str_eq
├── schoharie
└── str_hop
 ├── county
 └── nth_argmax
 ├── 1
 ├── all_rows
 └── unemployment rate

Gold Logical Form:

str_eq
├── schoharie
└── str_hop
 ├── argmax
 │ ├── all_rows
 │ └── unemployment rate
 └── county

T lT sentence: in the list of appalachian regional commission counties , schoharie has the highest
unemployment rate .

Human sentence: the appalachian county that has the highest unemployment rate is schoharie .

19

E.2 SIMILAR STRUCTURE, SEMANTICALLY DIFFERENT

Caption: dick rathmann

Table:

year qual rank finish laps
1950 130.928 17 32 25
1956 144.471 6 5 200
1957 140.780 withdrew withdrew withdrew
1958 145.974 1 27 0
1959 144.248 5 20 150
1960 145.543 6 31 42
1961 146.033 8 13 164
1962 147.161 13 24 51
1963 149.130 14 10 200
1964 151.860 17 7 197

T lT Logical Form:

less
├── num_hop_first
│ ├── filter_str_eq
│ │ ├── 1956
│ │ ├── all_rows
│ │ └── year
│ └── rank
└── num_hop_first
 ├── filter_str_eq
 │ ├── 1959
 │ ├── all_rows
 │ └── year
 └── laps

Gold Logical Form:

greater
├── num_hop_first
│ ├── filter_str_eq
│ │ ├── 1956
│ │ ├── all_rows
│ │ └── year
│ └── laps
└── num_hop_first
 ├── filter_str_eq
 │ ├── 1959
 │ ├── all_rows
 │ └── year
 └── laps

T lT sentence: dick rathmann had a lower rank in 1956 than he did in 1959 .

Human sentence: dick rathmann completed more laps in the indianapolis 500 in 1956 than in 1959 .

20

E.3 DIFFERENT STRUCTURE, SEMANTICALLY DIFFERENT

Caption: 2005 houston astros season

Table:

date winning team score winning pitcher losing pitcher attendance location
may 20 texas 7 - 3 kenny rogers brandon backe 38109 arlington
may 21 texas 18 - 3 chris young ezequiel astacio 35781 arlington
may 22 texas 2 - 0 chan ho park roy oswalt 40583 arlington
june 24 houston 5 - 2 roy oswalt ricardo rodriguez 36199 houston
june 25 texas 6 - 5 chris young brandon backe 41868 houston

T lT Logical Form:

most_str_eq
├── all_rows
├── arlington
└── location

Gold Logical Form:

str_eq
├── arlington
└── str_hop
 ├── argmin
 │ ├── all_rows
 │ └── date
 └── location

T lT sentence: most of the games of the 2005 houston astros ’ season were played in the location of arlington
.

Human sentence: arlington was the first location used in the 2005 houston astros season .

21

E.4 SIMPLER, MORE INFORMATIVE SEMANTIC

Caption: 2006 asp world tour

Table:
location country event winner runner - up
gold coast australia roxy pro gold coast melanie redman - carr (aus) layne beachley (aus)
tavarua fiji roxy pro fiji melanie redman - carr (aus) layne beachley (aus)
teahupoo , tahiti french polynesia billabong pro tahiti women melanie redman - carr (aus) chelsea georgeson (aus)
itacarã brazil billabong girls pro layne beachley (aus) jessi miley - dyer (aus)
hossegor france rip curl pro mademoiselle chelsea georgeson (aus) melanie redman - carr (aus)
manly beach australia havaianas beachley classic stephanie gilmore (aus) layne beachley (aus)
sunset beach , hawaii united states roxy pro melanie bartels (haw) stephanie gilmore (aus)
honolua bay , hawaii united states billabong pro jessi miley - dyer (aus) keala kennelly (haw)

T lT Logical Form:
eq
├── 7
└── count
 └── filter_str_eq
 ├── all_rows
 ├── aus
 └── winner

Gold Logical Form:
eq
├── 7
└── count
 └── filter_str_eq
 ├── all_rows
 ├── aus
 └── runner - up

T lT sentence: aus won 7 events in the 2006 asp world tour .

Human sentence: seven of the individuals that were the runner up were from aus .

22

	Introduction
	Logical Forms
	Dataset
	Logical Form grammar
	Content Selection

	Generating text via logical forms
	Table2Logic
	Logic2text

	Development of Table2Logic
	Experiments
	Model configurations
	Automatic evaluation
	Human Fidelity evaluation

	Qualitative analysis
	Table2Logic
	Logic2Text
	Can an incorrect LF produce a faithful description?

	Related work
	Conclusions and future work
	Training Procedure
	Model hyper-parameters
	Logical Form grammar
	Logic2text errors
	Comparative arithmetic
	LF omission
	Verbalization

	Examples of faithful TlT sentences where LF is different to gold
	Similar structure, semantically equivalent
	Similar structure, semantically different
	Different structure, semantically different
	Simpler, more informative semantic

