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Abstract

The field of Natural Language Processing (NLP) has advanced considerably, yet
applying its techniques to structured data, like tables, introduces unique chal-
lenges. These challenges stem from the structured nature of tables and the need
for accurate interpretation of their data. Among these challenges, a critical one
in Table Understanding (TU) is the ability to represent all table information in
a complete and efficient manner while ensuring, particularly in natural language
generation tasks like table-to-text, that the generated texts remain faithful to the
source data.

The goal of this thesis is to contribute to the field of TU by developing tech-
niques that enhance fidelity in table-to-text generation and improve table repre-
sentation to better capture information within tabular data. To this end, this thesis
explores the use of structured semantics to guide table-to-text generation models
in producing descriptions that faithfully represent table data. We dissect the criti-
cal components that play a key role in achieving this, including the grammar used
to represent these semantics and the conditioning signals required to build them.
We propose the use of automatically generated logical forms and analyze the im-
pact of content selection in enhancing the system’s accuracy. We demonstrate
that using automatically generated logical forms significantly improves faithful-
ness and factual accuracy in table-to-text generation, achieving a 67% increase in
fidelity over baseline models.

In addition, we propose a new method for effectively encapsulating informa-
tion across a wider range of table formats. Specifically, we introduce the use of Vi-
sual Language Models (VLMs) to capture information from tables represented as
images, highlighting their advantages over traditional text-based representations.
We also address inherent challenges in this approach by proposing a new image-
based structure learning curriculum to capture the structural dynamics of tabular
data and reduce structure-related fidelity errors. Our proposed image-based table-
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to-text generation model, PixT3, achieves state-of-the-art results, outperforming
other baseline models in both automatic metrics and human evaluations of faith-
fulness. PixT3’s strong performance on an out-of-domain dataset further demon-
strates its adaptability to previously unseen tables.

Finally, we extend our image-based approach to additional TU tasks, such
as Table Question Answering, Table Structure Recognition, Table Fact Verifica-
tion, and Table Numerical Reasoning by creating a multimodal, instruction-based
dataset that includes original table visualizations. We analyze state-of-the-art TU
pre-training objectives to construct a dataset designed to instill foundational, gen-
eralizable knowledge of table interpretation into vision-based models. To this end,
we introduce the largest multimodal, instruction-based TU dataset with original
table visualizations from Wikipedia to date, comprising 2.5 million examples and
1.1 million unique table images across 11 different tasks. This dataset addresses a
significant limitation of current multimodal TU datasets, which rely on lossy tex-
tual table representations, by incorporating original table visualizations instead.

This thesis contributes to the field of Table Understanding by introducing ad-
vancements that address the need for more reliable, scalable, and visually-aware
methods for table-to-text generation. This work also proposes new research lines
to further advance in this field. Our findings were published in a Journal Citation
Reports (JCR) Q1-ranked journal and the main conference of ACL 2024.
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1. CHAPTER

Introduction

This thesis is situated at the intersection of Natural Language Generation (NLG)
and Table Understanding (TU), specifically focusing on the generation of coherent
and accurate textual descriptions from tables, commonly referred to as table-to-
text generation. In the area of Natural Language Processing (NLP), recent ad-
vancements have expanded the potential for machines to interpret and produce
human language with increased fluency and accuracy. Structured data represen-
tation, however, requires additional layers of processing to accurately interpret
and convey the information encoded within tables, an inherently organized and
often complex form of data. This challenge is crucial as tables are widely used in
domains such as finance, healthcare, and scientific research.

Table-to-text generation presents unique challenges beyond those encountered
in general NLG tasks, due to the structured nature of the data and the need to ac-
curately interpret its information. This work contributes three key advancements
addressing these challenges, each designed to enhance the faithfulness, scalabil-
ity, and applicability of Table Understanding and table-to-text systems. The first
contribution focuses on improving fidelity in textual generation by using logi-
cal forms (LF) as intermediary representations. The second introduces a novel
approach to representing tables as visual entities, taking advantage of recent ad-
vancements in vision language models (VLMs). Finally, the third contribution
extends these techniques to a broader array of Table Understanding tasks, open-
ing the path to bring the benefits of this multimodal approach to a wider range of
tabular applications.

This thesis work was conducted within the Ixa group at the HiTZ research
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1 INTRODUCTION

center, University of the Basque Country. The Ixa group has a long-standing his-
tory of impactful NLP research, particularly in developing language tools for the
Basque language, along with a strong record of contributions to NLP research
more broadly. This research was also carried out in collaboration with the Edin-
burghNLP group at the University of Edinburgh. This collaboration has enabled
the development of novel approaches presented in this thesis.

1.1 Motivation

The recent advancements in NLP, driven by large language models, have enabled
models to perform a range of complex linguistic tasks with remarkable fluency.
However, generating faithful and contextually accurate text from structured data
sources like tables remains challenging. Being faithful to the original data is crit-
ical in table-to-text generation, where the goal is to create a reliable textual de-
scription from a table’s contents. Despite advances, current systems often produce
hallucinations, that is, content that appears plausible but is factually incorrect or
irrelevant (Koehn and Knowles, 2017; Maynez et al., 2020; Bender et al., 2021).

The first part of this thesis addresses this issue by building on previous work
in logical forms (LF), which have been shown to improve accuracy when used as
an intermediary representation between table data and text (Chen et al., 2020d).
This method, however, has traditionally required manual creation of logical forms,
which is impractical for large datasets and real-world use cases. To overcome
this limitation, we introduce a two-step model, Table-to-Logic-to-Text (T lT ), that
generates LFs automatically. By automating LF generation, this contribution en-
ables large-scale applications of LF-based fidelity improvements, offering a scal-
able solution to the fidelity challenge in table-to-text generation.

Our initial research into table-to-text generation also revealed the limitations
of traditional, text-only approaches in representing complex table structures. Ta-
bles in real-world applications often deviate from simple two-dimensional grids,
incorporating visual formatting and layout features that convey information in
ways that linearization, i.e. converting their textual content into a sequential
text format, cannot effectively capture. Recent developments in VLMs, such as
Pix2Struct (Lee et al., 2023), have demonstrated promising capabilities in tasks
that contain visually represented text. In the second part of this thesis, we explore
a multimodal approach to table-to-text generation by treating tables as visual en-
tities. This approach, implemented in the PixT3 model, bypasses the need for
textual linearization, allowing us to efficiently capture the structural richness of
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1.2 GOALS AND RESEARCH LINES

tables as they appear visually, which in turn improves the model’s ability to han-
dle larger and more complex data structures.

Following these advancements, we further extend the visual perspective of
table-to-text generation to broader Table Understanding tasks such as Table Ques-
tion Answering, Table Numerical Reasoning, or Table Fact Checking. Traditional
pre-training objectives for Table Understanding, such as next-token prediction and
masked language modeling, are not ideally suited to capture the semantic relation-
ships within tables, where the context may not naturally be correlated with their
neighboring cells. Additionally, current efforts in multimodal TU rely on im-
age renderings of text-based representations, which lose much of the visual and
stylistic information, making them lossy representations compared to the origi-
nal visualization. In this final contribution, we introduce a new multimodal TU
dataset that preserves the visual integrity of tables, tracing each example back to
its original source to capture a lossless view of the table. This dataset enables
the application of multimodal TU approaches while retaining the benefits of the
PixT3 model, that is, enhancing space efficiency and supporting richer contextual
understanding.

The motivation for this research is thus rooted in the need for more reliable,
scalable, and visually-aware methods for table-to-text generation and Table Un-
derstanding.

1.2 Goals and Research Lines

The main goal of this thesis is to contribute to the field of Table Understanding
by developing techniques that enhance fidelity in table-to-text generation, as well
as improving table representation to better capture information in tabular data. To
achieve this, we establish the following research lines:

[RL1] Improving Faithfulness in Table-to-Text Generation. Explore the use
of structured semantics to guide table-to-text generation models in produc-
ing descriptions that are faithful to the table data. In this line, we dissect
the different components that play a key role in achieving this, such as the
grammar used to represent these semantics and the conditioning signals re-
quired to build them. We propose the use of automatically generated logical
forms to achieve this goal and analyze the impact of content selection in a
system like this.

3
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[RL2] Improving Information Representation in Tabular Data. Explore inno-
vative ways of efficiently encapsulating all information represented across
a broader range of table formats. In this line, we propose the use of VLMs
to capture information from tables represented as images, highlighting their
advantages over traditional textual representations. We also address inher-
ent challenges in this approach, such as capturing the structural dynamics
of tabular data to avoid fidelity errors. This requires the development and
adoption of novel approaches to understanding table structure in visual ta-
bles.

[RL3] Expanding Our Findings to a Broad Range of Table Understanding
Tasks. Establish a foundation for extending our findings in table-to-text to
other Table Understanding tasks. In this line, we analyze the state-of-the-art
pre-training objectives in TU to build a dataset that can instill generalizable
foundational knowledge of Table Understanding into vision-based table lan-
guage models. This work addresses the shortcomings of current approaches
to multimodal Table Understanding, such as the reliance on lossy textual
representations of tables.

1.3 List of Scientific Contributions
In this section, we present the scientific contributions resulting from the research
conducted in this PhD thesis, along with another first-authored work unrelated to
the thesis topic, developed for a separate research project within the group over
the course of this PhD.

1.3.1 Research Contributions within this Thesis

[A.1] Alonso and Agirre (ESWA 2024) presented in Chapter 3

Alonso I., and Agirre E. (2024). Automatic Logical Forms improve fidelity
in table-to-text generation. In Expert Systems with Applications (Volume
238, Part D, 15 March 2024, 121869).

Abstract: Table-to-text systems generate natural language statements from struc-
tured data like tables. While end-to-end techniques suffer from low factual cor-
rectness (fidelity), a previous study reported fidelity gains when using manually
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produced graphs that represent the content and semantics of the target text called
Logical Forms (LF). Given the use of manual LFs, it was not clear whether au-
tomatic LFs would be as effective, and whether the improvement came from the
implicit content selection in the LFs. We present T lT , a system which, given a
table and a set of pre-selected table values, first produces LFs and then the textual
statement. We show for the first time that automatic LFs improve the quality of
generated texts, with a 67% relative increase in fidelity over a comparable sys-
tem not using LFs. Our experiments allow to quantify the remaining challenges
for high factual correctness, with automatic selection of content coming first, fol-
lowed by better Logic-to-Text generation and, to a lesser extent, improved Table-
to-Logic parsing.1

[A.2] Alonso et al. (ACL 2024) presented in Chapter 4

Alonso I., Agirre E., and Lapata M. (2024). PixT3: Pixel-based Table-
To-Text Generation. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).

Abstract: Table-to-text generation involves generating appropriate textual de-
scriptions given structured tabular data. It has attracted increasing attention in
recent years thanks to the popularity of neural network models and the availabil-
ity of large-scale datasets. A common feature across existing methods is their
treatment of the input as a string, i.e., by employing linearization techniques that
do not always preserve information in the table, are verbose, and lack space effi-
ciency. We propose to rethink data-to-text generation as a visual recognition task,
removing the need for rendering the input in a string format. We present PixT3,
a multimodal table-to-text model that overcomes the challenges of linearization
and input size limitations encountered by existing models. PixT3 is trained with a
new self-supervised learning objective to reinforce table structure awareness and
is applicable to open-ended and controlled generation settings. Experiments on
the ToTTo (Parikh et al., 2020) and Logic2Text (Chen et al., 2020e) benchmarks
show that PixT3 is competitive and, in some settings, superior to generators that
operate solely on text.2

1T lT code, models, and data are available at https://github.com/alonsoapp/tlt
2PixT3 code, models, and data are available at https://github.com/alonsoapp/

PixT3.
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1.3.2 Research Contributions beyond this Thesis

[A.3] Alonso et al. (AIM 2024)

Alonso I., Oronoz M., and Agerri R. (2024). MedExpQA: Multilingual
Benchmarking of Large Language Models for Medical Question Answer-
ing. In Artificial Intelligence in Medicine (Volume 155, September 2024,
102938).

Abstract: Large Language Models (LLMs) have the potential of facilitating the
development of Artificial Intelligence technology to assist medical experts for in-
teractive decision support. This potential has been illustrated by the state-of-the-
art performance obtained by LLMs in Medical Question Answering, with striking
results such as passing marks in licensing medical exams. However, while im-
pressive, the required quality bar for medical applications remains far from being
achieved. Currently, LLMs remain challenged by outdated knowledge and by
their tendency to generate hallucinated content. Furthermore, most benchmarks
to assess medical knowledge lack reference gold explanations which means that
it is not possible to evaluate the reasoning of LLMs predictions. Finally, the situ-
ation is particularly grim if we consider benchmarking LLMs for languages other
than English which remains, as far as we know, a totally neglected topic. In or-
der to address these shortcomings, in this paper we present MedExpQA, the first
multilingual benchmark based on medical exams to evaluate LLMs in Medical
Question Answering. To the best of our knowledge, MedExpQA includes for the
first time reference gold explanations, written by medical doctors, of the correct
and incorrect options in the exams. Comprehensive multilingual experimentation
using both the gold reference explanations and Retrieval Augmented Generation
(RAG) approaches show that performance of LLMs, with best results around 75
accuracy for English, still has large room for improvement, especially for lan-
guages other than English, for which accuracy drops 10 points. Therefore, despite
using state-of-the-art RAG methods, our results also demonstrate the difficulty of
obtaining and integrating readily available medical knowledge that may positively
impact results on downstream evaluations for Medical Question Answering. Data,
code, and fine-tuned models will be made publicly available3

3https://huggingface.co/datasets/HiTZ/MedExpQA
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2. CHAPTER

Background

This thesis presents a computational approach to Table Understanding (TU) from
a natural language perspective. Tables are structured arrangements of information
or data, typically organized in rows and columns, though sometimes with more
complex structures. They are widely used in communication, research, and data
analysis, and can usually be found in print media, handwritten notes, computer
software, and other forms of communication. Information conveyed through ta-
bles, referred to as tabular data, can consist exclusively of, or a combination of,
textual, numerical, or other visually representable data.

There are notable similarities between tabular data and linear natural language.
The main and most obvious one is when information appears in textual format.
However, regardless of the type of information within a table, tables also contain
implicit semantics in the form of contextual relationships between cells that may
not be explicitly stated. Tables also come frequently alongside natural language
captions to provide additional information, and many tasks involving tables are
either supported by or result in natural language utterances.

Therefore, it is a natural consequence that the field of computational Table
Understanding is tightly related to Natural Language Processing (NLP) and has
traditionally benefited from the developments in the latter field.
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2.1 Natural Language Processing
Natural Language Processing is the interdisciplinary field at the intersection of
computer science, artificial intelligence, and linguistics, aimed at enabling ma-
chines to process, understand, and generate human language. Broadly, NLP tasks
range from machine translation, sentiment analysis, and named entity recogni-
tion, to more complex activities such as question answering, summarization, and
dialogue systems.

This chapter provides an overview of the key advancements in NLP that have
contributed to the field of Table Understanding. It is worth noting that both fields
have experienced unprecedented growth and attention during the course of this
thesis, which has shaped the research goals and approaches throughout its devel-
opment.

2.1.1 Early Approaches to NLP
Early NLP approaches relied on rule-based systems that used hand-crafted lin-
guistic rules to process language (Weizenbaum, 1966; Winograd, 1972), which
were effective in limited contexts but struggled with the ambiguity of natural lan-
guage. More notably, other approaches like probabilistic n-gram models (Shan-
non, 1951), followed a data-driven approach to predict the likelihood of a se-
quence of words based in the n previous words, establishing the defining char-
acteristic of language models (LM). This approach became the cornerstone of
consequent works that applied statistical methods to improve tasks like machine
translation (Brown et al., 1990). However, these models still had limitations in
capturing long-range dependencies.

Neural Networks

The adoption of neural networks and its application on language modeling (Ben-
gio et al., 2000), marked a significant paradigm shift in this field. Recurrent Neural
Networks (RNNs) (Mikolov et al., 2010) emerged as an effective architecture for
processing sequences by maintaining a hidden state across time steps. However,
RNNs suffered from the vanishing gradient problem (Hochreiter et al., 2001),
making it challenging to model long-range dependencies in sequences. To ad-
dress this, Long Short-Term Memory (LSTM) networks Hochreiter and Schmid-
huber (1997) introduced a gating mechanism to regulate the flow of information,
enabling the retention of relevant data over longer time spans. Gated Recurrent
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Units (GRU) (Cho et al., 2014a) provided a simpler alternative with fewer param-
eters, offering comparable performance to LSTMs. Both Sutskever et al. (2014)’s
and Cho et al. (2014b)’s works also introduced the RNN encoder-decoder archi-
tecture that became an effective and standard approach for both neural machine
translation and sequence-to-sequence prediction in general.

The Attention Mechanism

The introduction of the attention mechanism (Bahdanau et al., 2015) significantly
improved sequence modeling, allowing models to focus on relevant parts of the
input without relying on strict sequential order. Attention paved the way for
more sophisticated architectures, addressing RNNs’ limitations and providing bet-
ter performance in machine translation, text summarization, and related tasks.
The attention mechanism laid the foundation for subsequent architectures like the
Transformer, enabling a more effective approach to understanding and generating
human language.

2.1.2 Transformers and Encoder-Decoder Architectures

Transformer Architecture

The introduction of the Transformer model by Vaswani et al. (2017) was a turn-
ing point in NLP. The Transformer replaced recurrent architectures with fully
attention-based mechanisms, significantly improving parallelization during train-
ing. The original transformer architecture uses an encoder-decoder structure,
where both components rely on multi-head self-attention and feed-forward layers,
with the decoder also incorporating cross-attention to integrate encoder outputs.
This model architecture became the backbone of state-of-the-art systems in NLP,
dramatically improving the performance of tasks such as machine translation, text
generation, and summarization.

Encoder-Only and Decoder-Only Architectures

While the original Transformer model included both encoder and decoder compo-
nents, subsequent variations of the Transformer architecture tailored the design for
specific tasks. For instance, BERT (Bidirectional Encoder Representations from
Transformers), introduced by Devlin et al. (2019a), is an encoder-only architec-
ture designed for tasks that require deep contextual understanding of the entire
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sequence, such as sentence classification, named entity recognition, and question-
answering. BERT uses a masked language model (MLM) pre-training objective,
allowing it to capture bidirectional context, as well as predicting whether two
given sentences come one after the other. This set the standard for using encoder-
only models in language understanding tasks (Liu et al., 2018; Yang et al., 2019;
He et al., 2020).

On the other hand, GPT (Generative Pretrained Transformer), introduced by
Brown et al. (2020), and the later LLaMA (Touvron et al., 2023) are Transformer-
based decoder-only architectures optimized for text generation tasks. Unlike BERT,
these architectures use a left-to-right auto-regressive language model that predicts
the next word in a sequence based on the previous context, making it highly ef-
fective for tasks such as text generation and completion.

Transfer Learning: Pre-training and Fine-Tuning

One of the most significant advancements in modern NLP has been the adoption of
transfer learning. Instead of training models from scratch for each task, models are
first pre-trained on large-scale corpora using self-supervised objectives, such as
predicting masked tokens (BERT) or the next word (GPT). After pre-training, the
models are fine-tuned on specific tasks with significantly less task-specific data.
This paradigm, led to substantial improvements across a wide range of NLP tasks,
including text classification, named entity recognition, and machine translation.

More recently, as models grow in size and complexity, techniques like Low-
Rank Adaptation (LoRA) (Hu et al., 2022), introduce an efficient model adap-
tation method that reduces the number of trainable parameters by factorizing
the weight matrices in transformers into lower-dimensional matrices during fine-
tuning. This significantly lowers the computational burden while maintaining high
performance on downstream tasks.

2.2 Table Understanding

Table Understanding is the subfield of Natural Language Processing focused on
interpreting, processing, and generating information from tabular data. While it
shares some similarities with other NLP tasks, TU needs to understand the struc-
ture, relationships, and semantics embedded within table formats. The field has
gained traction due to the growing number of applications requiring table data pro-
cessing, from information retrieval and data analytics to summarization and ques-
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tion answering. Early works such as RoboCup (Chen and Mooney, 2008), Weath-
erGov (Liang et al., 2009), and Rotowire (Wiseman et al., 2017a) demonstrated
the potential of NLP techniques to handle structured data like tables, paving the
way for advances in table-centric tasks and applications.

2.2.1 Table Taxonomy
Tables can vary significantly in format, structure, and complexity. While there is
no standardized taxonomy, tables are commonly categorized into three main types
based on their structural characteristics:

• Key-Value Pair Tables: These are simple collections of key-value pairs, re-
sembling a single row in a 2-dimensional table. An example is a Wikipedia
infobox, where each entry consists of a key (attribute) and its correspond-
ing value. The simplicity of this format limits the need for structural under-
standing beyond key-value matching. Table (a) in Figure 2.1 belongs to this
category.

• Regular Tables: In this format, tables have a predefined set of columns,
with one value per column, forming a matrix-like structure. These tables
typically represent relationships where each cell provides a value for a prop-
erty defined by the column header and corresponding to an entity in the cur-
rent row. This is the most common table format in tabular datasets due its
simplicity and wide use, and can be found in a wide range of sources from
documents to spreadsheets. Relational databases also involve strictly two
dimensional tables but these are often approached through semantic parsing
techniques due to the large amount of rows they typically contain. Table (b)
in Figure 2.1 belongs to this category.

• Irregular Tables: Also known as hierarchical tables, these tables feature
complex two dimensional structures with cells spanning multiple rows or
columns. Additional information can be conveyed through style formatting,
such as cell background or text formatting. Beyond the typical data found
in the previous two categories, these tables can also include other types of
visually representable data, such as images. Irregular tables often appear in
documents, web pages, and other visually oriented formats, requiring a vi-
sual representation for proper consumption. Table (c) in Figure 2.1 belongs
to this category.

11



2 BACKGROUND

Place Player Country Score

1 Willie Park, Jr. Scotland 151

2 Harry Vardon Jersey 154

T3 Thomas Renouf Jersey 156

T3 J.H. Taylor England 156

T5 Harold Hilton England 157

T5 David Kinnell Scotland 157

T7 James Kinnell Scotland 158

T7 Freddie Tait Scotland 158

9 Sandy Herd Scotland 159

10 David Herd Scotland 160

(b) Table with a Regular Structure (c) Table with an Irregular Structure

Place Player Countr
y

Score
1 Willie Park, Jr. 151

T2
David Kinnell 157
James Kinnell 157

Total Scotland 465

T3
J.H. Taylor 158

Harold Hilton 158
Total England 316

4 Harry Vardon 159
5 Thomas Renouf 161

Total Jersey 320
World Golf Hall of Fame 1974 (member page)

Willie Park, Jr.

Name Willie Park, Jr.

Born 4 February 1864

Died 22 May 1925

Nationality Scotland

Status Professional

Masters T. NYF

PGA DNP

U.S. Open CUT: 1919

The Open Won: 1887, 1889

Hall of Fame 2013

(a) Key-Value Pair Table

2.1 Figure – Comparison between the three table structure categories in this
thesis.

2.2.2 Task Typology
There are numerous established tasks in the area of Table Understanding. While
some tasks share overlapping methodologies and allow for knowledge transfer
across them, others present distinct challenges that remain active areas of research.
Below, we describe the most actively researched tasks in TU, discussing relevant
works, datasets, and evaluation methods.

Complexity Levels in Table Understanding

Before diving into the characteristics of each specific task, it is important to high-
light that each task can be approached at different levels of complexity. While
many of these complexity factors are specific to individual tasks, some are com-
mon to all tasks, including multi-table scenarios, reasoning requirements, hybrid
data sources, diverse table structures, output complexity, and table length.

• Multiple Tables: While many tasks focus on a single table, increasing the
number of tables to process is another factor of complexity that can be ap-
plied to many tasks. For example, MultiTabQA (Pal et al., 2023) tackled Ta-
ble Question Answering across multiple tables, while Zhang et al. (2024b)
explored multi-table settings for table-to-text generation.

• Reasoning Required: The need to perform reasoning based on table data
can also be considered a common complexity factor. This can range from
logical reasoning, as explored by Chen et al. (2020e), to mathematical rea-
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soning as seen in datasets like FinQA (Chen et al., 2021) and TabMWP (Lu
et al., 2023a).

• Hybrid Source: The requirement of processing tables alongside other modal-
ities like text, can also increase the complexity of many tasks. For example,
HybridQA (Chen et al., 2020c) combines table data with textual passages
to answer questions.

• Table Structure: Tasks can be carried out on regular or irregular tables,
the latter requiring a more challenging understanding of the table’s struc-
ture. Works like ToTTo (Parikh et al., 2020) and HiTab (Cheng et al., 2022)
address this challenge in table-to-text and TableQA tasks, respectively.

• Output Complexity: The length and intricacy of the expected output also
affect task difficulty. For example, Rotowire (Wiseman et al., 2017a) in-
volves generating long-form text descriptions averaging 337 tokens.

• Table Length: The length, in both the number of rows and the number
of columns, also poses a considerable increase in the challenge of a task.
Model context length limitations have historically kept researchers away
from tackling the challenges posed by long tables. However, works such as
MATE (Eisenschlos et al., 2021) have addressed the problem of encoding
long tables based on the Transformer context limitations of their time.

Regardless of these modifiers, the complexity of tasks also varies among them.
When following a training curriculum, low-complexity tasks typically come first,
serving as an initial exposure for the model to the domain of tabular data. Higher-
complexity tasks are used later to fine-tune the model for more complex down-
stream objectives and, sometimes, with the aim of improving its ability to gener-
alize to unseen tasks (Li et al., 2023a; Hu et al., 2024; Zheng et al., 2024).

The first stages of the training curriculum typically include tasks centered on
fundamental Table Understanding principles, such as semantic comprehension,
structural awareness, and relational understanding of the table and its entities.
More advance stages, on the other hand, include tasks that not only require basic
understanding of table mechanics but also involve performing additional opera-
tions, such as table question answering, table-to-text generation, numerical rea-
soning, or fact-checking.

However, the distinction between these two categories is not always clear-cut,
as some low complexity tasks can also serve as final downstream tasks. For ex-
ample, a TU model designed specifically to parse the table into a different format
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may require using structure recognition objectives as its primary objective. On
the other hand, more complex tasks can also function as intermediate steps aimed
at imparting higher-level knowledge to the model, without necessarily being the
final task. For instance, training a model to perform mathematical reasoning may
serve as a means to enhance its overall reasoning capabilities.

Table Understanding Tasks

Table Understanding includes a variety of tasks aimed at extracting, interpreting,
and reasoning over information encoded in tables. These tasks serve as a founda-
tion for numerous applications, from answering natural language queries based on
tables to generating coherent textual descriptions. In this section, we describe key
tasks in TU, their methodologies, datasets, and evaluation metrics, highlighting
recent advancements and their implications for the field.

Table Question Answering This task is one of the most prominent tasks in
Table Understanding and involves answering questions based on the content of
a table. The complexity of this task ranges from simple fact lookup to complex
reasoning tasks requiring multi-step operations.

Early approaches to Table Question Answering (TableQA) focused on simple
table lookups where the answer is a direct extraction from a table cell. For in-
stance, works like TaPas (Herzig et al., 2020) use BERT-based models fine-tuned
for TableQA tasks to extract answers from tables directly. TaPas demonstrated
the feasibility of using transformer models for table-based tasks by combining
structured data with pre-trained language models.

Further approaches perform reasoning over table cells to answer questions re-
quiring aggregation, comparison, or arithmetic operations. Notable works in this
direction include TAT-QA (Zhu et al., 2021), which tackles numerical reason-
ing by combining symbolic operations with deep learning approaches. Similarly,
FinQA (Chen et al., 2021) extends TableQA to financial documents, where com-
plex multi-step reasoning is essential. ReasTAP (Zhao et al., 2022) further en-
hances the reasoning capabilities of question answering models through explicit
reasoning chains.

Some approaches involve answering questions based on multiple tables or
combining information from tables and other sources such as text. For exam-
ple, MultiTabQA (Pal et al., 2023) addresses the challenge of question answering
across multiple tables by introducing techniques that identify relevant tables and
perform joint reasoning over the extracted information.
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Finally, other subcategories involve leveraging both tabular and textual data
sources to improve accuracy. HybridQA (Chen et al., 2020c) and TableLlama
(Zhang et al., 2024a) are examples where models utilize table data combined with
additional textual context, requiring models to navigate and integrate information
from different modalities.

Notable TableQA datasets include:

• WikiTableQuestions (Pasupat and Liang, 2015): One of the earliest and
most prominent datasets for TableQA, featuring questions derived from
Wikipedia tables. It serves as a benchmark for evaluating the ability of
models to interpret various table structures.

• SQA (Iyer et al., 2017): A dataset of sequences of questions over semi-
structured tables, simulating follow-up queries where the context evolves
across multiple turns.

• TAT-QA (Zhu et al., 2021): Focuses on numerical reasoning tasks over fi-
nancial tables. It is designed to test models on more challenging numerical
reasoning tasks, including multi-step arithmetic operations.

• HybridQA (Chen et al., 2020c): Combines tables with linked passages to
perform question answering over two information sources. The dataset re-
quires models to make use of both structured tabular data and unstructured
textual information to answer questions.

Evaluation in TableQA typically uses metrics such as Exact Match (EM) ac-
curacy, which measures whether the model’s output exactly matches the reference
answer, and F1 score, which accounts for partial matches (more information about
these metrics shown in Section 2.4). For models that predict specific table cells or
regions as the answer (instead of generating free-form text), the evaluation usually
focus on how accurately the model selects the correct cells. Other NLG metrics
like BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee
and Lavie, 2005) may also be applied to assess answer quality, especially in cases
involving free-form or descriptive responses.

Table Semantic Parsing Table semantic parsing involves translating a natural
language query into a structured representation (e.g., SQL query, logical form,
or graph) based on the content of a table. This task requires models to under-
stand both the semantics of the query and the table structure to produce accurate
representations for database querying or logical reasoning.
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Several approaches have been developed for table semantic parsing, like TAPEX
(Liu et al., 2022), which follows a pre-training approach in which a model learns
to execute SQL-like operations over tables. This work demonstrates that training
models to act as a SQL execution engine can enhance their understanding of ta-
ble semantics. Also, the WikiTableQuestions (Pasupat and Liang, 2015) TableQA
dataset was originally aimed at learning semantic parsers that can map natural lan-
guage questions to logical forms, which can then be executed on tables. Although
it is not directly mapped to SQL, it focuses on table-based semantic parsing tasks.
Other notable dataset for this task is WikiSQL (Zhong et al., 2017). This is a
large-scale dataset containing natural language questions paired with SQL queries
over Wikipedia tables. It serves as a primary benchmark for evaluating semantic
parsing over tabular data.

Table semantic parsing is evaluated based on the accuracy of generating the
correct structured representation (e.g., SQL query). This may involve exact match
accuracy against reference representations or measuring execution accuracy, which
checks whether the generated representation produces the correct output when ex-
ecuted against the table.

Table Entailment Table entailment, or table fact verification, involves classify-
ing whether a statement is supported or refuted based on the content of a table.
This task requires not only table comprehension but also reasoning capabilities to
match and validate facts against tabular data.

Notable works and datasets include: TabFact (Chen et al., 2020b), a collection
of Wikipedia tables and statements labeled as supported or refuted. It requires
models to perform multi-step reasoning and recognize entailment relationships.
Eisenschlos et al. (2020) also improve table entailment by adapting TAPAS with
data augmentation and table pruning. InfoTabs (Gupta et al., 2020), a dataset that
extends the entailment task to sentence-level comparisons with 1D tabular data
extracted from Wikipedia Info-boxes. InfoTabs provides a richer set of entail-
ment scenarios, including those requiring relational and numerical reasoning. Fi-
nally, Feverous (Aly et al., 2021) is a large-scale fact verification dataset based on
Wikipedia, incorporating not only textual claims but also tabular evidence. This
dataset challenges models to integrate information from both text and tables.

Table entailment approaches often leverage large language models fine-tuned
on entailment tasks, incorporating table-specific representations to understand
structured data. Evaluation is performed using accuracy, precision, recall, and
F1 scores to measure a model’s performance in classifying statements. Human
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evaluation may also be conducted for complex entailment cases to assess model
reliability in reasoning about table content.

Table Numerical Reasoning Table numerical reasoning involves solving math-
ematical problems using table data, such as performing arithmetic operations,
comparisons, and aggregations. This task is particularly challenging for language
models, which often struggle with numerical reasoning.

Notable works and datasets include, TAT-QA (Zhu et al., 2021) and FinQA
(Chen et al., 2021), two TableQA oriented benchmarks focused on mathematical
reasoning over financial tables, including numerical operations such as summa-
tion, subtraction, and percentage calculations. TabMWP (Lu et al., 2023a), a
dataset for solving math word problems using table data and challenge models
to understand tabular contexts and perform multi-step numerical computations.

Notably, in the Chain-of-Table (Wang et al., 2024) work, the authors introduce
a model that, given a query and a table, chooses and programatically performs a
series of transformations to simplify the table. These transformations can include
actions like calculating the average of a column or summing the values in a row.
The goal is to gradually reduce the complexity of the table so that the question
can be answered directly, after which the model provides the solution.

Approaches for table numerical reasoning often incorporate symbolic reason-
ing components to handle arithmetic operations, in addition to language model
fine-tuning. Evaluation is typically based on numerical accuracy, and models may
also be evaluated on their ability to generate reasoning steps, providing trans-
parency into their decision-making process.

Table-to-Text Generation Table-to-text generation refers to the task of generat-
ing descriptive text based on table content. Like the other tasks, there are different
variations that raise the complexity from simple table summarizations. One of
the pioneering works in this subfield, Rotowire (Wiseman et al., 2017a) proposes
generating long-form sport reports from game statistic tables. The length of the
desired summaries combined with the complexity of the tables makes this a chal-
lenging dataset.

The type of table also plays a key role in defining table-to-text challenges. For
instance, in WikiBio, Lebret et al. (2016a) propose using Key-Value Pair Tables
to generate biographies of historical figures. Other works like Logic2Text (Chen
et al., 2020e) or ReTAG (Ghosal et al., 2023), reduce the length of the target text
to focus on generating faithful descriptions that contain facts that are a result of
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reasoning over the table data. Meanwhile, approaches like QFMTS (Zhang et al.,
2024b) extend summarization to scenarios involving multiple tables.

The task of table-to-text generation presents a challenge, as, in its original
definition, it is underspecified. Without a content selection signal to guide the
generation, the range of possible verbalizations is so broad that it becomes diffi-
cult to determine whether one generated text is preferable to another, as long as
both remain faithful to the source data. To address this issue, several works have
proposed different settings in which a content selection signal is included in the in-
put to narrow down the possible verbalizations. For instance, ToTTo (Parikh et al.,
2020) provides a set of highlighted cells alongside the table, indicating the table
content on which the target text is based. Another approach, QTSumm (Zhao
et al., 2023), introduces the concept of Query-Focused Summarization (QFS),
where a query is added alongside the table to guide the generation towards the
desired description. The key distinction between this method and Table Question
Answering is that while TableQA requires a direct answer to a question, in QFS,
the answer is expected to be formulated as a longer, more descriptive sentence.

Evaluation in table-to-text generation includes traditional text generation met-
rics like BLEU, ROUGE, and METEOR, which measure the similarity between
generated and reference texts. Additionally, metrics specific to table-to-text gener-
ation, such as Content Selection (CS) and PARENT (Dhingra et al., 2019), assess
the accuracy and relevance of content generated based on the table. Human eval-
uation of faithfulness, that is, whether the generated text accurately reflects the
source table, is also common (Puduppully et al., 2019; An et al., 2022; Zhao et al.,
2023).

Table Structure Recognition Table Structure Recognition (TSR) involves iden-
tifying and parsing the structure of tables, often presented in visual format in
images or documents. It can be considered a multimodal task that lies at the
intersection of Table Understanding and Document Understanding, as it requires
models to recognize both the visual and structural components of tables. The table
knowledge required to solve this task is usually leveraged during the first step of a
curriculum training to instill solid foundational knowledge of table structure. No-
table works like TURL (Deng et al., 2020) and TUTA (Wang et al., 2021) extend
beyond structural recognition to incorporate semantic understanding as well.

Notable TSR datasets include:

• ICDAR 2013 (Gobel et al., 2013) and the follow up ICDAR 2019 cTDaR
(Gao et al., 2019) Datasets include a collection of scanned document images
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with a wide range of table types and layouts. It is widely used for table
detection and recognition tasks.

• PubTabNet (Zhong et al., 2020) is a large-scale dataset containing tabular
data in scientific publications. It includes tables extracted from PubMed
Central and provides annotations in HTML format that represent the table
structure.

• TableBank (Li et al., 2020) is a large-scale dataset containing over 417,000
tables from LaTeX documents and Microsoft Word documents, providing a
rich resource for table structure recognition tasks.

Typical metrics for TSR include row/column prediction accuracy and Tree-
Edit-Distance-based Similarity when parsing tables into structured formats like
HTML or LaTeX. TSR evaluation may also involve assessing the model’s abil-
ity to recognize complex structural elements such as merged cells or multi-level
headers.

Table Representation and Processing

In early works, tables were often represented as triplets or graphs. However, these
approaches presented challenges: triplet-based representations were overly sim-
plistic and unable to capture complex table structures, while graph-based repre-
sentations tended to be overly complicated. Although Graph Neural Networks
(GNNs) have been a promising approach for encoding table structures, they have
not consistently achieved sufficient results to justify the complexity of the system.
Some notable efforts in using GNNs for table encoding include works by Zhang
et al. (2020) and Liu et al. (2021), which attempted to leverage GNNs to capture
relational information in tables but faced difficulties in scaling and performance.

With the rise of Transformer-based models, many approaches began to repre-
sent tables as flat textual linearizations (An et al., 2022; Wang et al., 2022a). This
method introduced a trade-off: either all information was represented in a verbose
manner, resulting in inefficiencies, or some information was lost, especially in the
case of complex, structured tables.

Recent approaches, including the works developed in this thesis, have taken
advantage of the latest advancements in Vision Language Models (VLM) to en-
code tables as images, effectively capturing all information without significant
loss in a more efficient manner (Zheng et al., 2024; Deng et al., 2024). This shift
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allows for a better representation of the visual and structural aspects of tables
while maintaining the fidelity of the original data.

2.3 Vision Language Models

When recurrent neural networks (RNNs) began gaining popularity in natural lan-
guage processing, convolutional neural networks (CNNs) were experiencing a
similar rise in the field of computer vision. The emergence of deep learning
saw deep CNNs becoming widely used for image recognition, particularly after
Krizhevsky et al. (2012a) demonstrated their superior performance over previous
methods on ImageNet classification (Krizhevsky et al., 2012b), and Simonyan and
Zisserman (2015) highlighted the importance of their depth and capacity. Early
challenges with vanishing gradients were mitigated by introducing skip connec-
tions between convolutional layers (He et al., 2016; Xie et al., 2017; Szegedy et al.,
2017), establishing CNNs as the default choice for visual representation encoding
until recent times.

The transformer architecture is not limited to text processing. Dosovitskiy
et al. (2020) adapted an encoder-only transformer for image recognition by seg-
menting images into non-overlapping patches, converting them into one-dimensional
embeddings suitable for the encoder, and adding a classifier head. CNN-based and
transformer-based models now show comparable performance in image recogni-
tion, with both approaches remaining in use today.

However, the integration of transformers into vision tasks did not stop at image
recognition. Multimodal models, which combine information in multiple modali-
ties auch as language and vision, have gained traction by leveraging transformers’
ability to handle different types of inputs. LLaVA (Liu et al., 2023b), for example,
extends the use of transformers to understand visually-situated language by com-
bining vision transformers (ViTs) with large language models. LLaVA processes
visual inputs through a vision transformer that encodes image patches, while the
language model generates a unified representation to understand and produce text
grounded in visual context.

2.3.1 Visually Situated Language
Traditional research on language and vision has mainly focused on tasks where
images and text are treated as separate channels. However, encoding visually rep-
resented tables involves a blend of visual and textual elements that require holistic
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understanding. Traditional approaches to visually-situated language understand-
ing often relied on task-specific engineering and external tools like OCR, limiting
their adaptability and general applicability, although recent efforts are moving to-
wards end-to-end models that reduce these dependencies.

In their work Language Modeling with Pixels, Rust et al. (2023) explore a
novel approach to visually situated language understanding by treating pixels
directly as the input for language modeling, aiming to integrate visual and tex-
tual information in a unified framework, without relying on external tools like
OCR. Soon after, models such as Dessurt (Davis et al., 2022), Donut (Kim et al.,
2022), and Pix2Struct (Rust et al., 2023) demonstrated that end-to-end holistic
approaches achieve competitive performance against OCR-based models in docu-
ment understanding. Following these approaches, recent works like MatCha (Liu
et al., 2023a) and UniChart (Masry et al., 2023) have extended these capabilities to
include chart understanding and numerical reasoning, allowing these approaches
to succeed in areas where OCR-based and unimodal systems have struggled.

2.4 Evaluation

Many NLP and Table Understanding (TU) tasks involve generating coherent,
human-readable text. Tasks such as summarization, question answering, and
table-to-text generation require models to produce coherent and informative text
based on contextual data. These tasks fall under the domain of Natural Language
Generation (NLG). The intrinsic ambiguity, variability, and rich semantic context
of human languages make evaluating the quality of generated text in such open-
ended tasks challenging.

NLG evaluation methods are divided into three categories (Celikyilmaz et al.,
2020):

• Human-Centric Evaluation: This remains the gold standard for evaluating
most NLG tasks and involves human judges assessing the quality of gener-
ated texts. In these methods, human evaluators rate and compare generated
texts against human-written references or their own knowledge of the lan-
guage. Some tasks require evaluators to be domain experts, while others
only need proficiency in the language of the generated text. Although this
form of evaluation is considered the most reliable, it is also more expensive
and time-consuming than other methods. Therefore, it is typically used for
final evaluations rather than during the development phase.
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• Automatic Metrics: These methods compare generated texts against gold
references, usually relying on metrics based on n-gram overlap, string dis-
tance, or lexical diversity. This evaluation approach is widely used due to
its high comparability, applicability, and ease of implementation. However,
these metrics often fail to replicate human judgment and cannot fully as-
sess many desired characteristics of generated text (Reiter and Belz, 2009;
Krahmer and Theune, 2010; Reiter, 2018a; Wiseman et al., 2017a). Despite
their limitations, automatic metrics are especially useful during the devel-
opment phase and as auxiliary measures in the final evaluation alongside
human assessment.

• Machine-Learned Metrics: These metrics aim to model human judgment,
combining the comparability and applicability of automatic metrics with the
effectiveness of human evaluation. Machine-learned models compare gen-
erated texts against each other or against human-written references, offering
a more detailed and reliable assessment of generated text quality (Lu et al.,
2023b; Vu et al., 2022).

2.4.1 Human-Based Evaluation Methods
Regardless of the task, machine generated natural language is typically meant to
be addressed to human consumption. For this reason, despite recent advancements
in machine-learned metrics, human evaluation remains a crucial aspect to consider
when assessing NLG systems.

However, human evaluation techniques come with their own set of trade-offs.
Evaluating with human judges can be expensive and time-consuming, especially
when domain expertise is required. Crowdsourcing platforms such as Amazon
Mechanical Turk1 and Prolific2 can help mitigate these issues, but they also in-
troduce new challenges such as maintaining quality control (Ipeirotis et al., 2010;
Mitra et al., 2015), and increased evaluation costs. Additionally, inconsistency in
human evaluation processes makes it difficult for researchers to reproduce experi-
ments and compare results across different systems. Although many publications
report human evaluation results (Hashimoto et al., 2019), they often lack crucial
details about the evaluation process (Van Der Lee et al., 2019).

An important aspect of human evaluation is the agreement between evaluators.
Human assessments always exhibit a certain degree of subjectivity, leading to dis-

1https://www.mturk.com
2https://www.prolific.com
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crepancies between evaluator responses. This rate of mismatch can be measured
using inter-evaluator agreement metrics that assess the level of agreement between
different evaluators when evaluating the same generated text. High inter-evaluator
agreement indicates that the evaluation results are consistent and not heavily influ-
enced by individual biases or subjectivity. Some commonly used inter-evaluator
agreement metrics include Cohen’s Kappa (Cohen, 1960), which measures the de-
gree of agreement between two raters beyond chance, and Fleiss’ Kappa (Fleiss,
1971), an extension of Cohen’s Kappa for more than two raters.

2.4.2 Automatic Evaluation Metrics
The use of automatic metrics for evaluating NLG systems involves methods that
compare generated texts against reference texts. This is a common evaluation ap-
proach due to its ease of implementation and rapid assessment. Automatic metrics
can be grouped into five categories (Celikyilmaz et al., 2020): n-gram overlap
metrics, distance-based metrics, diversity metrics, content overlap metrics, and
grammatical feature-based metrics. This section will focus on the n-gram overlap
metrics most relevant to this thesis.

F-Score

The F-Score, is the harmonic mean of precision and recall. Although it is typically
used to evaluate classification tasks, this metric is also used in NLG to compare
generated and reference n-grams. Precision, also called specificity, is the number
of overlapping n-grams (tp) divided by the total number of n-grams in the gen-
erated text (tp + fp). Recall, also called sensitivity, is the number of overlapping
n-grams (tp) divided by the total number of n-grams in the reference text (tp +
fn).

The F-Score is defined as the harmonic mean of the model’s precision and
recall. It is possible to adjust the F-Score to give more importance to precision
over recall, or vice versa. Common adjusted F-Scores are the F0.5-Score and the
F2-Score, along with the standard F1-Score. The F1-Score is defined as:

F1 =
2× precision × recall

precision + recall
=

tp

tp+ 1
2
(fp+ fn)

(2.1)

In Table Understanding text generation tasks, such as table-to-text, the F-Score
provides an approximation of the quality of the generated sequence produced by
a model.
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BLEU

BLEU (Bilingual Evaluation Understudy) is one of the most widely used metrics
in NLG evaluation. Originally developed to evaluate machine translation (Pap-
ineni et al., 2002), this metric calculates the precision of n-grams between the
generated text and one or more reference texts, where a BLEU score of 1.0 in-
dicates a perfect match and a score of 0.0 indicates no match. This comparison
disregards word order and considers only the occurrence of words in the reference
text, meaning a candidate text is not rewarded for generating an excess of relevant
words beyond what is necessary. Mathematically, the BLEU score is defined as:

pn =

∑
s min(count(s, ŷ), count(s, y))∑

s count(s, ŷ)
(2.2)

where ŷ is the candidate sequence, y is the reference sequence, s is an n-gram
sequence of ŷ, and count(s, ŷ) is the number of times s appears in ŷ. The BLEU
score is then calculated as:

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(2.3)

where N is the total number of n-gram precision scores used (usually N = 4),
wn is the weight for each precision score, often set to 1/N , and BP is the brevity
penalty to penalize sequences that are too short.

BP =

{
1, if c > r
e(1−r/c), if c ≤ r

(2.4)

where c and r are the candidate and reference sequence lengths, respectively.
BLEU also supports the calculation of individual and cumulative n-gram scores.

It can use a fixed n-gram or the weighted mean of multiple n-gram scores. The
weights can be assigned equally or set differently, giving more importance to cer-
tain n-gram scores. In BLEU-4, for example, each of the 1-gram, 2-gram, 3-gram,
and 4-gram scores is weighted at 0.25.

BLEU was originally proposed for evaluating machine translation tasks, and it
has been reported to correlate well with human judgment for this purpose (Zhang
et al., 2004). However, it has been shown that BLEU does not perform as well on
tasks outside of machine translation (Reiter, 2018b) lacking awareness of seman-
tic meaning and global coherence (Caccia et al., 2018). Despite these limitations,
BLEU is still commonly used for other generation tasks (Rebuffel et al., 2020;
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Iso et al., 2020; Gehrmann et al., 2018), as it remains a relatively good proxy for
assessing the quality of generated text compared to references.

ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation) is a recall-based
metric used primarily for summarization tasks (Lin, 2004). The most common
variant, ROUGE-N, calculates the recall of n-grams between the generated text
and reference texts:

ROUGUE-N =

∑
r

∑
nmatch(gramn,r)∑

r

∑
s count(gramn)

(2.5)

where
∑

n sums over all n-grams of length n (e.g., if n = 2, the formula mea-
sures the number of times a matching bigram is found in the machine-generated
and the reference text). If there are more than one reference summaries, the outer
summation (

∑
n) repeats the process over all reference summaries.

ROUGE places a strong emphasis on recall, which makes it particularly suit-
able for evaluating summarization quality, ensuring that key content from the ref-
erence is included in the generated summary. However, like BLEU, ROUGE has
limitations in capturing semantic meaning and often fails to reward well-phrased
but slightly different summaries.

Content Selection, Relation Generation and Content Ordering

Content Selection (CS), Relation Generation (RG), and Content Ordering (CO)
are a collection of three evaluation metrics introduced by Wiseman et al. (2017a)
to evaluate these three specific characteristics of table-to-text generation. Unlike
BLEU, which rewards fluency without ensuring that important information is con-
veyed coherently, these metrics were designed to determine whether a summary
accurately represents the desired information.

These metrics are extractive, meaning they involve extracting data from the
generated text and comparing it to the reference input data. In order to achieve
this they require an information extraction model to obtain data from the generated
text. This extracted data comes in the form of entity-value-type triples. These
triples are then contrasted against the input table to calculate the following set of
values:

• Content Selection (CS): precision, recall and F1 score of unique triples
extracted from the generated text that are also extracted from the gold ref-
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erence text. This measures how well the generated text matches the gold
document in terms of selecting which records to generate. This metric tar-
gets the "what to say" aspect of evaluation.

• Relation Generation (RG): precision and amount of unique triples ex-
tracted from the generated text that also appear in the input table. This
metric measures the factual correctness of the generated text targeting both,
the "what to say" and "how to say it" aspects of evaluation.

• Content Ordering (CO): normalized Damerau Levenshtein Distance (Brill
and Moore, 2000) between the sequences of records extracted from the gold
reference text and the generated text. It measures the order in which the
model presents the records it chooses to discuss. This metric targets the
"how to say it" aspect of evaluation.

PARENT

PARENT (Precision and Recall of Entailed N-grams from the Table) is another
metric introduced by Dhingra et al. (2019) to address the limitations of traditional
evaluation metrics like BLEU and ROUGE in table-to-text generation tasks. Un-
like these metrics, which only measure overlap between generated text and refer-
ence, PARENT takes into account both the reference text and the source table. It
ignores reference content not present in the table and rewards information in the
generated text that is correctly sourced from the table, even if absent in the ref-
erence. Specifically, PARENT calculates precision and recall over n-grams that
are supported by the table, ensuring that the generated text is evaluated based on
both its semantic coverage of reference content and its alignment with the factual
information in the source.

2.4.3 Machine-Learned Metrics
Machine-learned metrics represent an evolution in the evaluation of NLG systems,
offering a balance between the efficiency of automatic metrics and the quality of
human evaluation. Unlike n-gram-based automatic metrics, which focus on lex-
ical overlap, machine-learned metrics can leverage pre-trained models to capture
semantic similarity and contextual alignment between generated and reference
texts. Additionally, some models can follow a set of guidelines to evaluate text
even without a reference text. This allows them to provide a more nuanced as-
sessment that better aligns with human judgment with the benefits of automated
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metrics. In this section, we explore key machine-learned metrics used in this the-
sis.

BERTScore

BERTScore (Zhang et al., 2019) leverages the pre-trained BERT model to com-
pute similarity scores between generated and reference texts. Instead of relying
solely on n-gram overlap, BERTScore uses contextual embeddings to compare
the semantic similarity between each token in the generated text and the reference
text. The metric is computed by aligning each token in the generated text with
the most similar token in the reference, thereby providing a precision, recall, and
F1 score based on semantic overlap. This makes BERTScore more effective in
capturing nuanced differences in meaning, compared to traditional metrics like
BLEU. However, its reliance on BERT means that it inherits the biases and limi-
tations of the underlying pre-trained model, which can affect its reliability in some
contexts.

BARTScore

BARTScore (Yuan et al., 2021) builds on the BART model, a transformer-based
sequence-to-sequence model, to evaluate generated texts by framing the evalua-
tion as a text generation problem. Specifically, BARTScore estimates the like-
lihood of the reference text given the generated text and vice versa, essentially
measuring how well the generated output could reproduce the reference content.
This approach allows BARTScore to evaluate fluency, coherence, and semantic
correctness in a more integrated manner. BARTScore is particularly effective for
tasks like summarisation and machine translation, where it is essential to evalu-
ate both fidelity to the original content and the quality of the generated output.
Nevertheless, like other machine-learned metrics, BARTScore’s performance is
dependent on the quality of the pre-trained model it uses.

2.4.4 Large Language Models as Evaluators

Recently, large language models (LLMs) like LLaMA (Touvron et al., 2023) and
commercial products such as GPT-4 (OpenAI, 2023) or Claude (Anthropic, 2023)
have been explored as evaluation metrics. These models are capable of under-
standing complex semantic relationships and generating human-like text, making
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them suitable for evaluating NLG outputs. By prompting LLMs to assess the qual-
ity of generated text or directly compare it with reference texts, these metrics can
achieve a level of evaluation that closely matches human judgment. This approach
has the advantage of being adaptable to a wide range of tasks, as LLMs can be
fine-tuned or prompted to focus on specific evaluation criteria such as relevance,
coherence, or fluency. However, using LLMs as evaluation metrics is computa-
tionally expensive, and their responses may vary depending on the prompt, requir-
ing researchers to measure their alignment with human judgment and leading to
concerns about consistency and reproducibility.
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Improving faithfulness in Table-to-Text Generation

3.1 Motivation and Contributions

Table-to-text generation involves producing coherent and accurate textual descrip-
tions from information contained in tables. This process has many applications,
such as generating weather forecasts from meteorological data (Goldberg et al.,
1994), summarizing sports events (Wiseman et al., 2017b), and creating descrip-
tions from biographical information (Lebret et al., 2016b). A key challenge in
these scenarios is ensuring that the generated text remains faithful1 to the source
data. This challenge is particularly pronounced because the task is inherently un-
derspecified, meaning that multiple valid verbalisations can be derived from the
same data. As a result, improving fidelity in this task is crucial, especially since
many current systems continue to struggle with producing outputs free from hal-
lucinations, i.e., where the generated content inaccurately reflects the input data
(Koehn and Knowles, 2017; Maynez et al., 2020; Bender et al., 2021).

In this first work of the thesis, we address the issue of improving fidelity in
table-to-text generation by building on the advancements of Chen et al. (2020d),
which incorporate logical forms (LFs) as an intermediary step between table data
and text generation. Their work demonstrated that incorporating LFs in the table-
to-text generation process can significantly improve faithfulness, raising factual
correctness from 20% to over 80%. However, their approach required LFs to be
manually produced, making their benefits costly and impractical for large-scale,

1We use the terms faithfulness, factual correctness, and fidelity interchangeably.
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TℓT (ours)Common Table-to-Text architectures

Automatic LF 
Generator 

(Table2Logic)

Surface 
Realizator 

(Logic2Text)
text

Table 
with CS

textTable-to-Text System
Table

LF

Table

3.1 Figure – Our proposed system to improve fidelity, T lT , (right) alongside a
typical table-to-text architecture (left).

real-world applications. This also raised questions about whether the benefits of
LFs could be transferred to automatically generated ones. This gap motivates the
key contribution of our work:

T lT (short from Table-to-Logic-to-Text), a two-step model that produces de-
scriptions by, first, automatically generating LFs from the table (Table-to-Logic
parsing), and then using those LFs alongside the table to produce the text (Logic-
to-Text generation). Our model (see Figure 3.1) enables practical usage of LFs
while preserving their fidelity benefits. Our research demonstrates that automat-
ically generated LFs can significantly enhance the accuracy of table-to-text sys-
tems. Empirical results confirm the advantages of using automatic LFs, showing
improvements in both content selection and fidelity when compared to systems
that do not utilize LFs.

Additionally, this work provides a detailed analysis of the model’s perfor-
mance, identifying content selection as the most critical factor influencing fidelity,
followed by logical form generation and, to a lesser extent, the parsing process.
These findings highlight the potential for further advancements in automatic con-
tent selection and LF generation techniques, paving the way for more reliable and
scalable table-to-text generation systems.

Our findings were published in the Expert Systems with Applications scientific
journal (Alonso and Agirre, 2024). All code, models and derived data are also
publicly available 2.

3.2 Methodology
In this section, we outline the methodological framework developed to enhance
fidelity in table-to-text generation. We begin by formally defining our problem,
and then introducing the concept of logical forms, which serve as structured repre-
sentations of table semantics, and detail their grammar and execution. Following

2https://github.com/alonsoapp/tlt
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this, we present our two-step Table-to-Logic-to-Text (T lT ) model, which consists
of generating LFs from table data and subsequently producing textual descriptions
guided by these forms. This approach integrates semantic parsing techniques and
pre-trained language models to generate logical forms, enabling more accurate
and factually consistent text generation from tables.

3.2.1 Problem Formulation
The task of table-to-text generation aims to take a structured table t as input and
output a natural language description y = [y1, . . . , yk] where k is the length of
the description. Table t is typically reformatted as a sequence of textual records
t = [t1,1, t1,2, . . . , ti,j, . . . , tm,n] where m and n respectively denote the number of
rows and columns of t.

3.2.2 Logical Forms
The LFs used in this work are tree-structured logical representations that capture
the semantics of a statement related to a table, similar to Abstract Meaning Rep-
resentation graphs (AMR) (Banarescu et al., 2012). These LFs are built following
the grammar rules established by Chen et al. (2020d). Each LF can be executed
against a table yielding a result based on the set operations it represents. Since
these graphs represent factual statements, the root node is always a boolean oper-
ation that returns "True" upon successful execution if the statement is supported
by the table. Figure 3.2 provides an example of a table, its caption, and the corre-
sponding logical form.

Logical Form Grammar

Logical forms follow a grammar containing several non-terminal elements (nodes
in the graph, some of which can be found in Fig. 3.2), which include:

Stat: Represents boolean comparative statements such as "greater than", "less
than", "equals" (denoted as eq in the figure), "not equals", "most equals", or "all
equals". This forms the root of the LF graph.

C: Refers to a specific column in the input table (e.g., attendance and result in
the figure).

V: Represents specific values, which may either be explicitly stated in the table
(e.g., w in the figure) or arbitrary values used in comparisons or filters (e.g., 52500
in the figure).
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Caption:
1979 philadelphia eagles season
Table:

opponent result attendance

new york giants w 23-17 67000

atlanta falcons l 14-10 39700

new orleans saints w 26-14 54000

new york giants w 17-13 27500

pittsburgh steelers w 17-14 61500

Statement: In the 1979 Philadelphia
Eagles season there was an average
attendance of 52500 in all winning games.

LF: eq { avg { filter_str_eq { all_rows ;
result ; w } ; attendance } ; 52500 } = True

eq

52500avg

attendance

all_rows

filter_str_eq

wresult

Grammar node Value nodeColumn node✖

✖

▲

▲

▲

✖

✖

✖ ■

■

■

Content Selection values: 52500, w

3.2 Figure – Example of a table with its caption, a logical form (in linearized and
graph forms), its corresponding content selection values and the target statement.
Note that w in the table stands for win. More details in the text.

View: Represents a set of rows selected based on a filter applied across all
rows. These filters define conditions on the values within a specific column (e.g.,
greater). In the figure, all_rows retrieves all rows, while filter_str_eq filters rows
containing the substring "w" in the result column.

N: Performs operations that return numeric values from a specified view and
column, such as sums, averages (denoted as avg in the figure), and minimum or
maximum values, as well as counts.

Row: Selects a single row based on maximum or minimum values within a
column.

Obj: Extracts values from columns within rows (either views or specific rows).
The most common operation is the hop function, which extracts a value from a
specific row. For example, str_hop_first extracts a string from the first row in a
given View.

I: Represents values used in ordinal operations within N and Row rules. For
instance, I would be set to 2 when selecting the "second highest".

We refer to B.3 for full details. Note that Stat, View, N, Row, and Obj serve as
internal nodes, forming the structure of the LF (shown in blue in the figure), while
C (columns), V (values), and I (indices) are always leaf nodes.
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Original Grammar Issues

We identified several ambiguities in the original grammar definition that hindered
the creation of a consistent framework for generating LFs and ensuring their un-
ambiguous execution.

String ambiguity The first ambiguity affects functions that handle strings. In
the LF execution engine proposed by Chen et al. (2020d), these functions are split
into two categories: one handles numeric and date-like strings, while the other
strictly processes other string values. To resolve this, we explicitly represented
these functions as two distinct groups within the grammar: one for numerical and
date-like values, and another for non-numeric strings, denoted by the suffix "_str."

Hop operation ambiguity The second ambiguity concerns the hop function.
When applied to a Row, this function extracts the value of one of its columns.
Although the grammar specifies that hop should only be applied to Row objects,
in 25% of dataset examples, it is applied to View objects, which can represent
multiple rows. To address this, we introduced a new function, hop_first, designed
specifically for these cases.

The updated grammar, which resolves these ambiguities, is presented in B.3.
Additionally, we automatically converted all LFs in the dataset to align with the
unambiguous grammar. We published the conversion script alongside the code,
models and derived data.

Content Selection

To evaluate the effects of content selection independently from the full LFs, we
extracted the content of the Value nodes from LFs to assess model performance
with and without content selection. These extracted values include both those
explicitly present in table cells and other values from the LF that are inferred,
such as results of arithmetic operations. These values serve as supplementary
input for the systems utilizing content selection (CS). We categorize these values
as follows:

• TAB: Values that appear in table cells either completely or as sub-strings.
For example, in Figure 3.2, "w" is a substring of several cells. 72.2% Value
nodes are of this type.
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• INF: Values that are inferred but not explicitly present in the table, such as
results of arithmetic operations. For instance, 52500 in Figure 3.2 corre-
sponds to the average attendance. 20.8% of Value nodes are of this type.

• AUX: Auxiliary values that are neither present in the table nor inferred, but
used in operations like comparisons (e.g., "All scores are greater than 20").
Only 7.1% are of this type.

In principle, a separate model could be trained to select and generate all nec-
essary content selection values for any table-to-text model. The steps would be as
follows: 1) Select values from table cells (TAB); 2) Infer values through opera-
tions like averaging or counting (INF); 3) Generate values for use in comparisons
(AUX). To differentiate the impact of content selection from LF generation, in
this work we focused on using manually derived content selection values from
gold reference LFs in the dataset, feeding these into the models. Experiments in
Section 3.3.3 show that content selection is critical, and without it, current mod-
els fail. The task of developing fully automated content selection mechanisms
remains an open area for future research.

3.2.3 Generating Text via Logical Forms
Our Table-to-Logic-to-Text (T lT ) system consists of two primary modules in a
pipeline. Given a table, its caption, and optionally selected content, the Ta-
ble2Logic module generates a logical form (LF). Using the same table infor-
mation and the generated LF, the Logic2Text module then produces the textual
statement.

Table2Logic Model

We frame the Table2Logic model as a semantic parser, adapting the IRNet grammar-
based decoder by Guo et al. (2019) to generate LFs. Specifically, we base our
implementation on Valuenet by Brunner and Stockinger (2021), a modern revi-
sion of IRNet. Both models are Natural Language to SQL semantic parsers that
generate grammatically correct SQL queries from natural language descriptions.
We adapted the system to produce LFs instead of SQL. The architecture of Ta-
ble2Logic is shown in Figure 3.3.

During an execution of Table2Logic, we first use a pre-trained BERT encoder
(Devlin et al., 2019b) to process the concatenated input, which includes the table’s
caption, the table content in linearized form, the column names, and, in some
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encoded caption encoded table cells value embeddings column embeddings

+ +caption linearized table manual CS values columns

Sketch decoder

encoded table 
cells & valuesgrammar rules
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indexes…

…
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encoded  
columns

Pointer Network

Column nodeGrammar node Value node Index node
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[CLS]

BERT

+
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3.3 Figure – The architecture of the Table2Logic system, which consists of
two primary components: the BERT encoder and the LSTM-based grammar
decoder. The input to the system includes the table’s caption, column names,
and linearized table content. Additionally, in some configurations, content selec-
tion values are incorporated, which are extracted from the gold reference logical
forms. The BERT encoder processes these inputs, generating embeddings that
are fed into the LSTM decoder. The decoder, guided by four pointer networks,
generates the logical form in a two-step process: first, by producing a sketch LF
containing only grammar-related nodes, and then by filling in placeholders for
values, columns, and indices during a second iteration. The architecture allows
constrained decoding to ensure that the generated LF adheres to the predefined
grammar structure, ultimately yielding an executable logical form that represents
the table data. The False Candidate Rejection (FCR) policy is used during infer-
ence to ensure that only logically correct LFs are selected for final output.

configurations, a set of content selection values extracted from the associated gold
reference LF. More details on content selection values are provided in Section
3.2.2.

The output embeddings from the CLS token, caption tokens, and linearized
table values are then passed into an LSTM decoder Hochreiter and Schmidhu-
ber (1997). At each decoding step, the LSTM’s attention vector is used by four
different pointer networks (Vinyals et al., 2015), each specializing in generating
one node type: grammar, Value, Column, and Index. We apply a constrained de-
coding strategy, selecting the appropriate pointer network based on the next node
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type required by the LF grammar. The pointer networks use the attention vector
alongside a set of embeddings. For Value and Column nodes, these embeddings
consist of content selection values and column encodings produced by BERT. For
Index and grammar nodes, a separate set of predefined embeddings is used.

Following Guo et al. (2019), Table2Logic performs two decoding iterations.
The first iteration generates a "sketch" LF using the grammar pointer network,
producing only grammar-related nodes (shown in blue in Fig. 3.2). The second
iteration fills in the placeholders for Value, Column, and Index nodes using the
corresponding pointer networks.

We train the model using a teacher-forcing strategy. During the first iteration,
the loss is computed by accumulating the cross-entropy loss for each grammar
node generated, given the previous gold reference nodes. This sketch is then used
to compute the cross-entropy loss for generating Value, Column, and Index nodes.
The model weights are updated based on the sum of these losses.

During inference, beam search is used to generate a set of candidate LFs. We
also introduce a False Candidate Rejection (FCR) policy to filter out LFs in the
beam that result in a "False" statement, which would lead to factually incorrect
text. As explained in 3.2.2, the root node of each LF is a boolean rule that re-
turns "True" upon successful execution if the statement is supported by the table.
We exploit this property to discard LFs that, despite being grammatically correct,
convey false information, i.e., return "False" upon execution. Only the LF that
both executes to "True" and has the highest beam probability is selected. Section
3.3.3 details experiments using FCR.

Logic2Text Module

For text generation, we use the top-performing model from Chen et al. (2020d),
which is a GPT-2 large (Radford et al., 2019) fine-tuned to generate text from
tables and human generated manual LFs. This model, referred to as Logic2Text,
takes as input the table caption, table headers, linearized table content, and logical
form. The model generates a sentence strongly conditioned by the semantics of
the LF. With Logic2Text, we produce natural language statements based on the
automatically generated LFs from the Table2Logic module.
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3.3 Experiments
In this section, we present the experiments and evaluation results for our (T lT )
system. Our experiments are designed to evaluate the faithfulness of our model,
comparing the effectiveness of automatically generated LFs versus manually pro-
duced ones. We evaluate multiple configurations of our system across several di-
mensions, including the impact of content selection, the performance of different
model configurations, and the benefits of rejecting false candidates during infer-
ence. We use both automatic metrics and human evaluations. We also conduct an
extensive qualitiative analysis to identify key areas for future improvement. We
begin by introducing the dataset used, followed by the details of the models and
their configurations, and conclude with the results of our evaluation.

3.3.1 Dataset
The dataset used in this study was introduced by Chen et al. (2020d) and consists
of 4,992 open-domain tables, extracted from the LogicNLG dataset (Chen et al.,
2020a). Each table is associated with an average of two human-written state-
ments that describe factual information present in the table. Annotators followed
a predefined questionnaire to explain the logical structure behind these statements,
which allowed Chen et al. (2020d) to generate Logical Forms for each statement.
The final dataset contains 10,753 examples, divided into 8,566 training instances,
1,092 development instances, and 1,095 test instances, all featuring high-quality
human-annotated LFs, their corresponding table data, and human-generated state-
ments. These manually generated LFs are referred to as "gold LFs", in contrast to
the automatic LFs produced by our system. As noted earlier, the task of generat-
ing text from tables is underspecified, meaning there are multiple factually correct
statements (and LFs) that could be derived from the same data, even though they
may not be explicitly included in the dataset.

3.3.2 Model Configurations
The model configurations used in our experiments are shown in Figure 3.4. All
models process all table-related input, which includes the table caption, linearized
table content, and column headers. The top row features the upper-bound model
T lTgold, which takes as input both the table and the manually created gold ref-
erence LF. The middle row shows our T lT system, which is composed of two
modules: Table2Logic and Logic2Text. Both T lT and T lTgold share the same
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With Content Selection

TℓTgold Logic2TextTable
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Table2Logic 
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Table
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Table2Logic Logic2TextTable
LF textTable
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Table

Table
CS

Manual CS

Manual CS

3.4 Figure – Model configurations used in the main experiments.

Logic2Text module, but while T lTgold uses manually generated LFs, T lT relies
on LFs generated automatically. We evaluate T lT in two configurations: with
content selection (T lT ) and without content selection (T lTnoCS). The hyper-
parameters for Logic2Text were set according to the defaults from Chen et al.
(2020d).

The baseline models (T2T, short for Table2Text) are shown in the bottom row.
These models generate text directly from table information, either with or with-
out content selection. For consistency, the baseline models use the same GPT-2
architecture as Logic2Text, but without LFs (during neither training nor inferece).
T2TnoCS receives only the linearized table as input, while T2T incorporates the
same list of manual content selection values used by T lT .

3.3.3 Content Selection Ablation Study
To understand the role of content selection and the impact of filtering out LFs that
evaluate to False (False Candidate Rejection, FCR), we conducted an ablation
study using the development set. Accuracy was evaluated based on strict match
with the gold LFs. Both sketch accuracy (where placeholders are used for non-
grammar nodes) and full accuracy were measured. While multiple LFs could be
valid for a single table, accuracy remains a useful proxy for comparing model
performance. The results shown are taken from the best model checkpoints after
50 training epochs, based on full accuracy on the development set. We tuned a few
hyperparameters on development data, while most remained at default settings
(see B.2 for details).

Table 3.1 summarizes the performance across different subsets of content se-
lection values, with the final row showing the results when FCR was applied.
Without FCR, the most important content values were those directly extracted
from the table (TAB). The best results overall were achieved when all values were
used, although the inclusion of AUX values did not provide much improvement
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Model Sketch Full
No content selection (T lT noCS) 15.0 4.9
AUX 14.0 6.2
INF 28.7 11.0
TAB 42.6 27.3
TAB, INF 56.5 39.3
TAB, AUX 44.3 28.6
TAB, INF, AUX 58.5 38.9
TAB, INF, AUX + FCR (T lT ) 56.0 46.5

3.1 Table – Content Selection ablation results for Table2Logic. We report accu-
racy (%) over Chen et al. (2020d)’s development set, evaluating both sketch and
full versions of gold LFs for different subsets of content selection (CS) and False
Candidate Rejection (FCR), as described in Section 3.3.

(in fact, excluding AUX values led to marginally better results).
The use of FCR significantly boosted the accuracy of full LFs, demonstrating

that this method helps filter out "False" LFs that would otherwise lead to incorrect
statements.

Although the overall accuracy of T lT might appear low, it is important to
remember that the gold LFs represent only a subset of the possible correct LFs.
As we will show in later sections, the LFs produced by T lT are of high quality,
despite their lower measured accuracy.

Additionally, we performed an ablation where table information was removed,
providing the model only with the content selection data. Both sketch accuracy
and full accuracy dropped significantly (to 50.3% and 42.7%, respectively), high-
lighting the importance of including table data, even when content selection is
available.

3.3.4 Automatic Evaluation
For the automatic evaluation, we compared the generated descriptions to the refer-
ence descriptions in the test split using n-gram overlap metrics. Table 3.2 presents
the results for BLEU-4 (B-4) (Papineni et al., 2002), ROUGE-1, 2, and L (R-1,
R-2, and R-L) (Lin, 2004), as well as two metrics that capture semantic similarity:
BERTscore (BERTs) (Zhang et al., 2019) and BARTscore (BARTs) (Yuan et al.,
2021).
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Model B-4 R-1 R-2 R-L BERTs BARTs
T2TnoCS 16.8 37.7 19.3 31.6 88.8 -4.04
T lT noCS 15.6 39.0 18.9 32.2 87.9 -4.03
T2T 26.8 55.2 31.5 45.7 91.9 -2.98
T lT (ours) 27.2 56.0 33.1 47.7 92.0 -2.99
T lT gold 31.7 62.4 38.7 52.8 93.1 -2.65
T lT gold* 31.4* 64.2* 39.5* 54.0* - -

3.2 Table – Automated n-gram similarity metrics for generated textual descrip-
tions on the test set. Metrics include BLEU-4 (B-4), ROUGE-1, 2, and L (R-1,
R-2, R-L), BERTscore (BERTs), and BARTscore (BARTs). The last two rows
represent upper-bound results, which use manual LFs. Results marked with * are
from Chen et al. (2020d). Both BERTs and BARTs reflect f1 scores, with higher
BARTscore values indicating better performance.

The results show that both the baseline (T2TnoCS) and our system (T lTnoCS)
perform poorly without content selection. However, when content selection is in-
corporated, performance improves by around 10 points in all metrics for both
T2T and T lT . The use of automatically generated LFs in T lT provides addi-
tional gains over the T2T system, yielding at least one point higher across all
metrics. If T lT had access to the correct LFs, the results would improve by an
additional four points, as shown by the T lTgold results. Notably, our T lTgold
results closely match those reported by Chen et al. (2020d), with only minor vari-
ations, likely due to weight differences between the model released by the authors
and ours.

3.3.5 Human Fidelity Evaluation
To assess the fidelity of the generated descriptions, we conducted a manual evalu-
ation with three models: the baseline T2T, our T lT model, and the upper-bound
T lT gold. We randomly selected 90 tables from the test set, generating a descrip-
tion for each table with all three models. Each evaluator was given 30 sentences,
along with the corresponding table and caption, and asked to determine whether
the description was true, false, or nonsensical in relation to the table and caption.
A group of eighteen volunteer researchers, who were not involved in the project,
performed the evaluations. Fleiss’ kappa (Fleiss, 1971), a statistical measure for
assessing agreement among multiple raters, was used to evaluate inter-rater con-
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sistency. The kappa value of 0.84 indicated strong agreement among the evalua-
tors, and examples with disagreements were discarded.

The results of the human fidelity evaluation are presented in Table 3.3. Our
findings show that the fidelity results for T lTgold are consistent with the values
reported by Chen et al. (2020d). For completeness, we also include the results for
T2TnoCS from their paper, which are comparable to the results presented here.

Human fidelity evaluations showed much larger differences between models
than automatic metrics, which can be attributed to the limitations of n-gram over-
lap metrics (such as BLEU and ROUGE) in evaluating the semantic and pragmatic
quality of text. These metrics often fail to capture deeper meaning, leading to sce-
narios where a model’s output may have high overlap with the reference text but
still be factually incorrect (Zhang et al., 2019). Furthermore, such metrics may not
correlate well with human judgments, which can result in high scores for gram-
matically correct but semantically flawed text (Moramarco et al., 2022).

From these results, we can estimate the individual contributions of various
model components to fidelity:

• Manual content selection adds 24 points (T2TnoCS vs. T2T);

• Automatic LFs contribute an additional 30 points (T2T vs. T lT );

• Manual LFs provide a further 7 points (T lT vs. T lTgold);

• Perfect Logic2Text generation could yield 18 more points (T lT gold vs.
100%).

These results confirm the significance of automatically generating LFs to boost
fidelity, with the largest improvement being 30 points, leading to a 67% improve-
ment over models that do not use LFs. The remaining gaps highlight areas for
future research, such as improving automatic content selection (24 points), en-
hancing Logic2Text generation (18 points), and refining Table2Logic parsing (7
points). In the following section, we explore the errors in the latter two compo-
nents in more detail.

3.3.6 Qualitative Analysis
We also performed a qualitative analysis of the failure cases from both the Ta-
ble2Logic and Logic2Text modules, as well as examined instances where factu-
ally correct descriptions were generated from LFs that differed from the gold LFs.
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Model Faithful Unfaithful Nonsense

T2TnoCS* 20.2* 79.8* -
T2T 44.9 49.3 5.8
T lT (ours) 75.0 20.3 4.7

T lT gold 82.4 13.51 4.1

3.3 Table – Human evaluation of fidelity across three model configurations using
90 test samples. The table shows the percentage of generated sentences classified
as Faithful, Unfaithful, or Nonsense by human evaluators. Cases with complete
disagreement between evaluators were discarded. Results marked with * are
from Chen et al. (2020d).

Table2Logic

We analyzed the LFs generated by T lT in the development set that did not match
their gold LF counterparts. It is important to note that a generated LF can still be
valid even if it does not match the gold LF. For this analysis, we traversed each LF
left to right, identifying the first node that deviated from the gold standard. Table
3.4 lists the most frequent discrepancies, ordered by frequency.

The most common differences involved Stat nodes, where the generated com-
parison was different from the gold reference. Column and row selections were
also frequently mismatched, even when the system had access to content selection
values. These three types of nodes were responsible for the majority of deviations.
Less frequent differences involved generating alternative comparison or arithmetic
operations.

Logic2Text

In cases where descriptions were generated from gold LFs (T lT gold), the faithful-
ness score was 82%. To better understand the 18% of cases that were incorrect,
we sampled examples for further analysis. Full examples, including the table,
caption, gold LF, and generated description, can be found in Appendix B.4. The
errors were grouped into three main categories:
Comparative arithmetic: In 40% of errors, Logic2Text incorrectly represented
comparative arithmetic rules. For example, it might incorrectly state that a value
was smaller than another when the LF indicated it was larger. Additionally,
Logic2Text often omitted qualifiers such as "roughly" or "most", leading to in-
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Fr. Total Confusions

Stat 0.38 0.13
greater → less

all equals → most equals
equals → and

C 0.25 0.19 column 3 → column 0
column 1 → column 0

Row 0.16 0.02
row 0 → row 2
row 2 → row 0
row 2 → row 1

View 0.11 0.20
filter_greater → filter_less
filter_greater → filter_eq

filter_eq → all_rows

N 0.05 0.03 sum → avg
avg → sum

Obj 0.03 0.26 str_hop → num_hop
num_hop → str_hop

V 0.01 0.16 value 72 → value 73
value 70 → value 71

I 0.01 0.01 1 → 0

3.4 Table – Distribution of node type discrepancies between T lT and gold LFs.
"Fr." indicates the frequency of node types in mismatched LFs, while "Total"
represents their overall frequency in gold LFs. The rightmost column lists the
most frequent confusions (i.e., nodes generated by T lT compared to their gold
LF counterparts).

correct statements of equality.
We hypothesise that these errors may be linked to the limited number of pa-

rameters in the model. With 774M paremeters, GPT-2 large was starting to be
considered medium size by the time we conducted this study, however althought
to the tiem of writing, current LLMs with 7B, 13B, and even 70B parameters still
struggle with mathematical reasoning. Thus we this might not be related as much
to the parameter count but more to the architecture or pre-training objective itself.

We originaly hypothesized that these errors may have been linked to the lim-
ited number of parameters in the model. However, at the time of writting this
thesis, GPT-2 large, with 774 million parameters, is already considered relatively
small compared to newer large language models (LLMs) with 7B, 13B, or even
70B parameters. Despite their increased size, even these more recent models still
face challenges in mathematical reasoning. Suggesting that the issue may not be
tied strictly to model size, but rather to architectural limitations of LLMs or the
objectives used during pre-training, which may not sufficiently capture the nu-
ances of comparative arithmetic reasoning. Another contributing factor could be
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LF difference Sentences
Similar structure, se-
mantically equivalent

T lT : In the list of Appalachian regional commission counties,
Schoharie has the highest unemployment rate.
Human: The appalachian county that has the highest unemployment
rate is Schoharie.

Similar structure, se-
mantically different

T lT : Dick Rathmann had a lower rank in 1956 than he did in 1959.
Human: Dick Rathmann completed more laps in the Indianapolis 500
in 1956 than in 1959.

Different structure,
semantically differ-
ent

T lT : Most of the games of the 2005 Houston Astros’ season were
played in the location of arlington.
Human: Arlington was the first location used in the 2005 Houston As-
tros season.

Simpler structure,
more informative

T lT : Aus won 7 events in the 2006 asp world tour.
Human: Seven of the individuals that were the runner up were from
aus.

3.5 Table – Examples of faithful sentences generated by T lT from intermediate
LFs that do not match the corresponding gold LF.

the relatively low frequency of certain comparative rules in the dataset, with only
44% of LFs involving any of the 22 comparative arithmetic rules. Importantly,
similar errors also occur in models that do not use LFs, suggesting these issues
are not exclusive to our system.

LF omission: In 33% of cases, Logic2Text omitted entire branches of the LF,
resulting in incomplete or inaccurate sentences. This often caused the generated
sentence to incorrectly refer to all data points, rather than the subset specified in
the LF.

Verbalization: Verbalization errors accounted for 27% of the mistakes, including
misspellings or incorrect word choices. For example, Logic2Text might generate
a name like foulisco instead of the correct francisco.

These errors likely stem from the fact that Logic2Text is based on a general-
purpose language model (GPT-2). While these models excel at generating fluent
text, they may not always faithfully reflect the data in the input LF, even after
fine-tuning. Some of these issues may also arise from the low frequency of certain
operations in the training set. While the 18% error rate for T lT gold is lower than
that of non-LF models, it suggests there is still room for improvement.
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Implications of Divergent LF Production from Gold Reference LF

Although our Table2Logic system achieved only 46% accuracy when compared to
gold LFs (as shown in Table 3.1), the descriptions generated from these LFs were
highly faithful, with a 75% fidelity score, only 7 points lower than descriptions
based on gold LFs. This may seem counterintuitive, but it demonstrates that a
system can generate correct and faithful LFs that differ from the gold reference by
focusing on a different aspect of the table data.

To further investigate, we manually examined cases where T lT generated
faithful descriptions using LFs that deviated from the gold standard. In all such
cases, the generated LFs were correctly structured and faithfully represented the
table data. Table 3.5 provides a sample of these outputs, with full examples avail-
able in B.5.

We categorized the discrepancies as follows: 69% of cases involved LFs with
a similar structure to the gold references, but with key differences in Value or
Column nodes. In 15% of cases, the LFs were semantically equivalent to the gold
references, despite structural differences. The remaining 16% involved LFs with
a different structure that still faithfully represented the table data.

This analysis highlights the limitations of reference-based evaluations, where
LFs that diverge from the gold standard may still produce accurate and useful
descriptions. As such, the 46% accuracy score underestimates the true quality
of the generated LFs and the corresponding descriptions. In some instances, the
descriptions generated by T lT were more concise and informative than those
based on gold LFs, further demonstrating the potential of the system.

3.4 Conclusions

In this chapter, we introduced T lT , a system that, given a table and selected con-
tent, first generates logical forms and then produces a textual statement. This work
demonstrates, for the first time, that the automatic generation of LFs enhances per-
formance across multiple automatic evaluation metrics, and significantly improves
factual correctness based on human evaluation. We also conducted a detailed
analysis to separate the contributions of content selection and the formalization of
outputs as LFs, finding that the latter has a more pronounced impact on fidelity.

This work contributes to the field by enabling table-to-text applications to
leverage the benefits of automatically generated, factually verifiable logical forms
without the need for creating them manually. These benefits include a 67% im-
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provement in fidelity compared to baseline models, as well as the introduction
of an intermediate formal representation in the text generation process. This in-
termediate step allows for the automated validation of factual accuracy prior to
generating the final natural language output, which is crucial for many table-to-
text applications where maintaining faithfulness is crucial.

Our analysis also revealed that the most significant potential for performance
improvement lies in the content selection process. Enhancements in logic-to-text
generation and table-to-logic generation would yield additional, though smaller,
gains in fidelity. Future research will focus on developing automated content se-
lection, which we believe can be learned from patterns in user preferences found
in training data. Furthermore, recent advances in semantic parsing, such as the use
of larger pre-trained language models (BigScience Workshop, 2022; Zhang et al.,
2022; Touvron et al., 2023), can be integrated into our system to further enhance
the role of LFs in improving fidelity. Finally, enhancing the model’s capacity
for mathematical reasoning, particularly to improve its handling of comparative
clauses would also be an interesting line for future research.
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Pixel-based Table-To-Text Generation

4.1 Motivation and Contributions

The findings in our previous chapter proved the use of logical forms to be useful
and promising when applied to regular tables. However, after examining numer-
ous tables from different datasets, we discovered that many real-world tables do
not conform to such table formats but rather to irregular ones. Therefore, in order
to develop a system applicable to all tables, we needed to explore a new paradigm
for representing them.

We follow the intuition that tables found in documents and web-pages are
ultimately intended to be consumed visually. Authors often take advantage of
the structural and formatting freedom of these domains to convey information
in ways that go beyond the limitations of regular table formats (See Figure 4.1
for a comparison between regular and irregular tables). As a result, many tables
deviate significantly from the traditional matrix-like format, making traditional
approaches either impractical or suboptimal.

Table-to-text generation models typically transform tables into text sequences
through linearization, a method that inevitably introduces redundancies and results
in excessively long inputs (Figure 4.2 offers an example on how a table is typically
linearized as text). This issue has been recognized in numerous prior works, rang-
ing from early template-based methods (Wiseman et al., 2018) to more advanced
neural models that attempt to respect the table’s structure through explicit content
planning or contrastive learning techniques (Su et al., 2021; An et al., 2022; Chen
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Place Player Country Score

1 Willie Park, Jr. Scotland 151

2 Harry Vardon Jersey 154

T3 Thomas Renouf Jersey 156

T3 J.H. Taylor England 156

T5 Harold Hilton England 157

T5 David Kinnell Scotland 157

T7 James Kinnell Scotland 158

T7 Freddie Tait Scotland 158

9 Sandy Herd Scotland 159

10 David Herd Scotland 160

Club Season
League Continental Other

Division Apps Goals Apps Goals Apps Goals

RubinKazan

2011-12 Russian 
Premier 
League

0 0 0 0

2012-13 0 0 1 0

Total 0 0 0 0 0 0

Neftekhimik 
Nizhnekamsk (loan)

2012-13 Russian 
FNL

6 0 6 0

2013-14 13 1 15 0

Total 19 1 0 0 0 0

Khimik Dzerzhinsk 2014-15 Russian 
FNL 9 1 11 1

Lokomotiv Plovdiv

2016-17
First 

League

33 3 36 3

2017-18 29 3 31 3

2018-19 2 0 2 0

Total 64 6

Career total 83 7 0 0 0 0

(a) Table with a Regular Structure (b) Table with an Irregular Structure

4.1 Figure – Comparison between regular and irregular table formats.

et al., 2023b). However, despite these advancements, most approaches still treat
tables as sequences of tokens, failing to fully leverage their structural and spatial
properties. Previous efforts to treat table-to-text generation as a multimodal task
have been limited, often focusing on converting table images into textual tokens
using OCR-based systems (Dash et al., 2023), a noisy process that reduces the
table to a secondary modality.

Vision language models (VLMs) have made significant progress in handling
visually-grounded text understanding. Pix2Struct (Lee et al., 2023), for instance,
has demonstrated how visual models can be applied to language tasks without
relying on OCR, showing significant improvements in tasks like chart question
answering (Masry et al., 2022) or Visual Question Answering. However, their use
in structured data generation remained underexplored.

Given the limitations of text-based approaches and the increasing capabilities
of VLMs in processing visually represented language, we proposed to rethink
table-to-text generation as a visual recognition task. This shift allowed us to avoid
the inefficiencies of string-based table representations and instead treat tables as
visual objects, which naturally preserves their structure and compactness. Our
work builds on recent advancements in VLMs, such as Pix2Struct (Lee et al.,
2023), by extending their applicability to the table-to-text domain. By leveraging
pixel-based models, we introduce PixT3, a multimodal table-to-text generation
model that operates directly on the visual representation of tables. This approach
addresses the challenges posed by linearization and context size limitations, mak-
ing it suitable for both open-ended and controlled generation settings.

In this work, we present PixT3, the first table-to-text generation model to gen-
erate text directly from tables represented as images. This pixel-based approach
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allows us to bypass the limitations of linearized table representations, improving
the model’s ability to handle larger and more complex table structures.

To further enhance the model’s understanding of table layouts and their con-
tent, we propose a new self-supervised learning objective that reinforces structure-
awareness of visually represented tables during training. This ensures that the
model captures essential relationships within tables without requiring explicit con-
tent selection.

Through extensive experiments on the ToTTo (Parikh et al., 2020) and Logic2Text
(Chen et al., 2020e) datasets, we demonstrate that PixT3 outperforms state-of-the-
art models in tasks where the table is part of the input, in both open-ended and
controlled scenarios, while remaining competitive when only provided with the
context-selected values of the table.

Finally, we introduce a new dataset derived from Logic2Text, specifically de-
signed to evaluate the generalization abilities of table-to-text models. This dataset
enables testing of new approaches on the complex logical reasoning within tables.

4.2 Methodology

4.2.1 Problem Formulation

As we described in the previous section, we define the task of table-to-text genera-
tion as the task that involves converting a structured table t into a natural language
description y = [y1, . . . , yk], where k is the length of the description. Typically,
the table t is reformatted as a sequence of textual records t = [t1,1, t1,2, . . . , tm,n],
with m and n representing the number of rows and columns, respectively.

In this occasion, we approached this task from a visual recognition perspec-
tive, where the input table is treated as an image x.

The input image is reshaped into a sequence of patches, analogous to linguis-
tic tokens. More formally, for an input image x ∈ RH×W×C and patch size p,
we create N image patches denoted as xp ∈ RN×(P 2·C). Here, (H,W ) represents
the resolution of the original image, C is the number of channels, (P, P ) repre-
sents the resolution of each image patch, and N = HW

P 2 is the resulting number of
patches, which effectively serves as the input sequence length. The model was de-
signed to autoregressively estimate the conditional probability of a text sequence
given the source image, as described by the following equation:
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Table Title: Shuttle America
Section Title: Fleet

Aircraft Total Orders Passengers Operated for Notes
F Y+ Y

Embraer E170 5 - 6 16 48 70 United Express transferred to Republic Airline
14 - 9 12 69 Delta Connection Delta Shuttle 2 planes on wet lease 

from Republic AirlineEmbraer E175 15 - 12 12 52 76
Total 35 -

Linearized Table: <page_title> Shuttle America <page_title> <section_title> Fleet
<section_title> <table> <row> <cell> Aircraft <cell> <cell> Total <row_header>
Aircraft <row_header> <cell> <cell> Orders <row_header> Aircraft <row_header>
<row_header> Total <row_header> <cell> <cell> Passengers <row_header>
Aircraft <row_header> <row_header> Total <row_header> <row_header> Orders
<row_header> <cell> <cell> Operated For <row_header> Aircraft <row_header>
<row_header> Total <row_header> <row_header> Orders <row_header>
<row_header> Passengers <row_header> <cell> <cell> Notes <row_header>
Aircraft <row_header> . . . . . .

Target Description: Shuttle America operated the E-170 and the larger E-175
aircraft for Delta Air Lines.

4.2 Figure – Example of table-to-text generation taken from the ToTTo dataset
(Parikh et al., 2020). In the controlled setting, a natural language description is
generated only for highlighted (yellow) cells. The table is linearized by encoding
each value as a (Column, Row, Value) tuple. We only show the first row, for
the sake of brevity.

P (y|x;θ) =
n∏

i=1

P (yi|y<i,x;θ) (4.1)

where θ represents the transformer parameters, and y<i refers to the words
decoded so far.

As we mentioned in previous chapters, the task of table-to-text generation is
challenging from a modeling perspective due to its inherent under-specification.
Without a clear content selection signal, the range of possible verbalization is
broad, making it difficult to determine which generated text is preferable as long
as both remain faithful to the source data. To address this, the ToTTo dataset
(Parikh et al., 2020) provides highlighted cells within the table, indicating the spe-
cific content that should be verbalized. In this work we followed follow ToTTo’s
approach and we defined three distinct generation settings to represent the infor-
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2D absolute posi.onal embedding layer

ViT encoder

Transformer decoder

In the 1898 Open Championship, Park 
scored six points less than Harold Hilton.

4.3 Figure – Overview of PixT3 generation model.

mation provided to the model (see Appendix C.2 for visualization):

• Tightly-controlled setting (TControl): The model is provided with only
the highlighted cells, excluding the rest of the table. This setting has been
commonly used in recent benchmarks (Wang et al., 2022b; An et al., 2022;
Chen et al., 2023b; Su et al., 2021; Kale and Rastogi, 2020).

• Loosely-controlled setting (LControl): The model is given both the high-
lighted cells and the entire table. This was the originally intended setting
for the ToTTo dataset (Parikh et al., 2020).

• Open-ended setting (OpenE): The model is provided with the entire table
without any highlighted content.

4.2.2 The PixT3 Model
PixT3 is an image-encoder-text-decoder model that uses Pix2Struct (Lee et al.,
2023) as its backbone. It was designed to process tables rendered as images and
generate corresponding textual descriptions (see Figure 4.3). Pix2Struct is a ViT
model pretrained on 80 million webpage screenshots extracted from URLs in the
C4 corpus (Raffel et al., 2020). The model divides each input image into 16×16
pixel patches, creates embeddings for each patch, applies positional encodings,
and feeds them into a Transformer encoder (Vaswani et al., 2017) to process the
tabular data.
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4 PIXEL-BASED TABLE-TO-TEXT GENERATION

During the development of Pix2Struct, the model underwent an initial warm-
up phase following a reading curriculum (Rust et al., 2023; Davis et al., 2022),
where it learned to transcribe image-rendered text. This step helped instill basic
text recognition capabilities and improved both training stability and fine-tuning
performance. In the second, and main, pretraining phase, Pix2Struct was pre-
trained with a screenshot parsing objective, generating simplified HTML subtrees
for areas within a bounding box in the webpage screenshots. Additionally, a
BART-like (Lewis et al., 2020) objective was incorporated, where 50% of the in-
put text was masked, and the model had to reconstruct it during the HTML subtree
generation process.

Beyond its text recognition proficiency, one of the key advantages of using
Pix2Struct as the backbone for our model, rather than other end-to-end text recog-
nition VLMs like Donut or Dessurt (Kim et al., 2022; Davis et al., 2022), is its
ability to handle variable input resolutions and aspect ratios. Pix2Struct automat-
ically resizes input images (up or down) to fit the maximum number of fixed-size
patches within the sequence length, using 2-dimensional positional embeddings to
accommodate different resolutions and aspect ratios without distorting the image.
This flexibility is crucial when processing table images of varying sizes.

For training PixT3, we followed a similar curriculum. First, we initialized its
weights using those from Pix2Struct. Next, we continued pretrained the model on
a novel structure recognition task to improve its notion of table structures (more on
this in Section 4.2.4). Finally, we fine-tuned the model on table-to-text generation
datasets, such as ToTTo (Parikh et al., 2020), using a task-specific supervised
objective.

4.2.3 Table-to-Image Rendering
To transform ToTTo serialized tables into images, we parsed tables into HTML
format and rendered as images, including metadata such as Wikipedia page titles
or section headers when available. We rendered each table into three images,
each corresponding to one of the generation settings (TControl, LControl, OpenE)
outlined earlier in Section 4.2.1 (see Appendix C.2 for examples).

While Pix2Struct supports variable input resolutions, handling extremely large
images is computationally expensive. Following the approach in Lee et al. (2023),
we limited the maximum input length to 2,048 patches (each of size 16×16 pix-
els), corresponding to a maximum image size of 524,288 pixels. In datasets like
ToTTo, approximately 41.74% of the tables exceeded this size (see Figure C.1 in
Appendix C.1), with 5% of the tables exceeding 8.3M pixels (32,768 patches). To
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mitigate the performance issues caused by downscaling all large images, we in-
troduced a truncation method based on a maximum downscaling factor γ. Images
were first scaled down to γ% of their original size and then truncated from left to
right to fit within the 2,048-patch limit. The optimal value for γ was determined
empirically and was set to 0.39 (see Appendix C.3).

4.2.4 Structure Learning Curriculum

Pix2Struct, being a general-purpose visual language understanding model, lacks
specific knowledge about table structures. Tables often exhibit a variety of vi-
sual presentations, such as spanning multiple rows or columns, irregular spacing
and alignment, and diverse formatting styles. Additionally, tables follow struc-
tural conventions, where cells are generally related to others in the same row or
column. These challenges have led to the development of dedicated table struc-
ture understanding techniques (Jin et al., 2023; Wang et al., 2022b) in text-based
settings but cannot be directly applied to images.

To address this, we developed a structure learning curriculum by continuously
pretraining PixT3 on an intermediate task that exposed the model to the conven-
tions governing table layouts. Below, we outline this intermediate task, the corre-
sponding dataset, and the self-supervised learning objective.

Dataset for Intermediate Training While existing datasets like ICDAR2021
(Kayal et al., 2021) and TableBank (Li et al., 2019) are representative of table
parsing tasks, they primarily focus on scientific tables, which differ significantly
from the Wikipedia tables found in ToTTo (Parikh et al., 2020), especially in terms
of size and spanning cells. As a result, we created a synthetic image-to-text dataset
tailored specifically for our task, using the table rendering pipeline described in
Section 4.2.3. This process is flexible and can be adapted to other domains.

The structure of each table (size, column, and row spans) was randomly de-
termined following on the distribution of these values in the ToTTo training set
tables. Tables were limited to a maximum of 20 columns and 75 rows. Table
cells were populated with random combinations of English alphabet characters
and digits, serving as identifiers for the table cells rather than meaningful values
(see Figure 4.4). The dataset consists of 135,400 synthetic tables: 120,000 for
training, 7,700 for validation, and 7,700 for testing.
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oY io HG eG2S

Z4ikU O1 aRU mubk6

URa dAF I

I86 GAe Ob sUr5

L1 3 Vf1 Svaq2

<<<dAF><<<URa><I>>><<<io><O1><GAe>

<3>><<HG><aRU><Ob><Vf1>>>>>

Table:

Target:

4.4 Figure – Synthetically generated table with a highlighted cell and corre-
sponding pseudo-HTML target sequence (for self-supervised objective). Cells
within the target sequence are highlighted in the table with a colored background.
For details on the structure of the target, please refer to Appendix C.4.

Self-supervised Objective Common masking objectives used in language mod-
els, such as those found in BERT (Devlin et al., 2019a), do not transfer well
to table-to-text tasks because table values are not naturally correlated with their
neighboring cells. This makes it difficult to predict a masked cell based solely
on its context. Early experiments with rearranging cells to create correlations
did not improve downstream task performance (see Appendix C.4). Additionally,
pretraining with table linearization scales poorly with large tables (Chen et al.,
2023a), resulting in slow pretraining times.

In this work we proposed a self-supervised objective that encouraged PixT3 to
capture relationships between cells in a table while generating a minimal number
of tokens. Specifically, a random cell in a synthetic table was visually highlighted,
and the model was trained to produce a sorted list of cells within the same row and
column (see Figure 4.4). This objective captured a loosely notion of table struc-
ture, encouraging the model to focus on the spatial relationships between rows and
columns. We used the same pseudo-HTML notation introduced in Pix2Struct to
format the output sequence, helping the model transition from its screenshot pars-
ing objective to this new task. For tables with heterogeneous structures, where
cells spanned multiple rows or columns, the expected sequence contained all cells
related to the highlighted one (see Figure 4.4).
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4.2.5 PixT3 Fine-tuning

After the structural continuous pretraining, PixT3 was then fine-tuned on our
image-rendered version of the ToTTo dataset (see Section 4.2.3). Although we
chose the ToTTo dataset to perform our experiments, our method is not limited to
any specific table format. Since our model processes unimodal input, we include
table-related metadata (e.g., titles and section headers) as part of the table image
itself, rendering them together as a single image (similar to the approach in Lee
et al. (2023)).

4.3 Experiments

4.3.1 Experimental Setup

Model Configuration

All experiments in this work were conducted using the 282M parameter base
Pix2Struct model (Lee et al., 2023). PixT3 variants were trained for the three
table-to-text generation settings as defined in Section 4.2.1. For fine-tuning, PixT3
models were trained on the ToTTo dataset (Parikh et al., 2020) with tables ren-
dered as images, following the procedure described in Section 4.2.3.

Fine-tuning was performed with a batch size of 8 and a gradient accumula-
tion of 32 steps, using a single NVIDIA A100 80GB GPU. We selected check-
points based on the best validation set performance. All models used an input
sequence length of 2,048 patches and were optimized with the AdamW optimizer
(Loshchilov and Hutter, 2017). The learning rate followed a schedule with a lin-
ear warmup over 1,000 steps up to 0.0001, after which it was decreased back to
0 following a cosine decay. The decoder’s maximum sequence length was set to
50 tokens, covering 97.49% of the target descriptions in the training data. PixT3
was trained for 1,400 steps using the self-supervised objective from Section 4.2.4.
Although we initially feared that exposing the model to the random text of our syn-
thetic dataset would deteriorate the language modeling capabilities of Pix2Struct,
our experiments showed that fully training the model produced better results than
keeping the decoder weights fixed. Thus we performed this intermediate train-
ing without freezing the decoder weights. Detailed hyper-parameters are listed in
Appendix C.8.
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Datasets

We primarily evaluated PixT3 on ToTTo (Parikh et al., 2020), a large dataset with
manually curated tables from various domains. To test the model’s ability to gen-
eralize to out-of-distribution data, we also used Logic2Text (Chen et al., 2020e).
This dataset contains 10,161 Wikipedia tables paired with human-written descrip-
tions and logical forms. Unlike most examples in ToTTo, Logic2Text focuses on
textual descriptions that require reasoning over tabular data. We used the logical
form parsing and execution engine developed in our earlier work to automati-
cally trace the cells involved in the reasoning process, using them as highlighted
cells, similar to ToTTo (see Appendix C.5). Results are reported on the official
Logic2Text test set, which includes 1,085 examples.

Model Comparison

PixT3 was compared against several text-only models of comparable parameter
size. These included CoNT (An et al., 2022), the top-ranked model on the ToTTo
leaderboard at the time of writing, which uses contrastive learning techniques and
a global decoding strategy. CoNT, built on T5-base (220M parameters), expects
input tables to be linearized into text sequences. We also compared against Lattice
(Wang et al., 2022b), which encodes tables with layout awareness and position
invariance, and vanilla T5-base, which performed competitively on the ToTTo
leaderboard without specific modifications (Kale and Rastogi, 2020; An et al.,
2022). All comparison models, along with PixT3, were fine-tuned on ToTTo for
the three generation settings.

For out-of-domain experiments, we compared PixT3 against LLaVA-1.5 (Liu
et al., 2023c), a large multimodal model (13B parameters) that combines the CLIP
visual encoder (Radford et al., 2021) with the Vicuna-7B language model (Zheng
et al., 2023). Although LLaVA is not specifically fine-tuned for table-to-text gen-
eration, its large scale made it an interesting point of comparison. Due to its ar-
chitectural limitations, LLaVA can only process a single image per forward pass,
limiting its ability to perform in-context learning. To simulate this setup, we pro-
vided LLaVA with an image, an instruction, and three example table descriptions
for each generation setting (see Appendix C.6). A summary of the number of
parameters for all models is shown in Table 4.2.
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4.3.2 Results

In this section, we present the results of our experiments, evaluating PixT3 across
the three established table-to-text generation settings. We detail our findings,
comparing its performance against state-of-the-art models on both the ToTTo and
Logic2Text datasets.

PixT3 Outperforms in Loosely Controlled and Open-Ended Settings

Table 4.1 presents the results of our experiments on ToTTo across the three gener-
ation settings. Model performance was evaluated using the same metrics as those
on the ToTTo leaderboard: BLEU (Papineni et al., 2002) as a measure of fluency,
PARENT (Dhingra et al., 2019), which takes table content into account to assess
faithfulness, and BLEURT (Sellam et al., 2020), a composite metric that mea-
sures fluency and reference fidelity. ToTTo’s test and development sets contain
both overlapping and non-overlapping splits, where table headers may or may not
appear in the training data.

In the tightly controlled generation setting (TControl), PixT3, as expected,
did not outperform text-only models like CoNT or Lattice, since the highlighted
cells provide limited visual information (see Appendix C.2, Figure C.2). PixT3
was outperformed by CoNT by 3.5 BLEU points on the development set and 3.7
points on the test set. However, in the loosely controlled setting (LControl), PixT3
excelled, showing nearly twice the improvement over CoNT and T5 models. In
the challenging open-ended setting (OpenE), where models are required to select
relevant content in addition to generating text, performance dropped across all
models. However, PixT3 still outperformed CoNT, Lattice, and T5 in all metrics
in this setting.

PixT3 Generalizes to Unseen Tables Requiring Reasoning

We tested PixT3’s generalization capabilities by evaluating its performance on
the Logic2Text dataset, which includes more complex reasoning tasks. Table 4.2
presents the results across the three generation settings. In the tightly controlled
setting (TControl), PixT3’s performance was relatively low, given that this setting
only includes the highlighted cells and reasoning over the entire table is essential
for producing accurate descriptions. However, in the loosely controlled setting
(LControl), PixT3 performed significantly better, showing its ability to generate
out-of-domain descriptions over entire tables. In the open-ended setting (OpenE),
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Dev TestN TestO Test

Model BL PR BL PR BL PR BL PR

T5-base 47.7 57.1 38.9 51.2 55.4 61.1 47.2 56.2
T5-3B 48.4 57.8 39.3 51.6 55.1 60.7 47.2 56.2
Lattice 48.0 58.4 40.0 53.8 55.9 62.4 48.0 58.1
CoNT 49.0 58.6 40.6 53.7 56.7 62.5 48.7 58.1T

C
on

tr
ol

PixT3 45.7 55.7 37.5 50.6 53.2 60.4 45.4 55.5

T5-base 24.5 27.2 19.4 23.9 29.4 30.3 24.5 27.1
T5-3B 23.6 26.0 18.0 22.4 28.7 29.2 23.4 25.8
Lattice 24.9 31.0 20.8 27.7 27.5 33.8 24.4 30.8
CoNT 23.8 29.3 19.2 26.1 28.7 32.3 23.9 29.2L

C
on

tr
ol

PixT3 46.2 55.1 38.1 50.3 52.7 59.0 45.4 54.7

T5-base 21.5 23.5 16.8 21.0 26.5 26.5 21.7 23.8
T5-3B 20.8 22.9 16.7 20.3 25.5 25.5 21.2 22.9
Lattice 20.9 26.1 17.6 24.3 23.7 27.6 20.8 25.9
CoNT 21.7 25.8 16.9 23.2 26.3 28.3 21.6 25.8O

pe
nE

PixT3 24.8 28.3 20.5 26.3 28.9 30.3 24.7 28.3

4.1 Table – Evaluation results on ToTTo across three generation settings: tightly
controlled (TControl), loosely controlled (LControl), and open-ended (OpenE).
We report BLEU (BL) and PARENT (PR) scores on the development (Dev) and
test sets, including both overlapping (TestO) and non-overlapping (TestN) test
splits. BLEURT scores are provided in Appendix C.5.

where models must autonomously select interesting content, PixT3 outperformed
LLaVA and maintained parity with CoNT and Lattice.

Interestingly, a large multimodal model like LLaVA, could not match the per-
formance of PixT3 or the T5-based models, indicating that fine-tuning for table-
to-text tasks is more important than sheer parameter size. Output examples for
Logic2Text are available in Appendix C.5.

PixT3 Shows Robustness to Large Table Sizes

One important finding of this work is illustrated in Figure 4.5, where we analyze
the impact of table size on model performance. As shown, T5, Lattice, and CoNT
models struggle with larger tables, exhibiting reduced PARENT scores (BLEU
scores also follow the same trend). PixT3, however, demonstrates greater robust-
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TControl LControl OpenE

Model Size BLEU PARENT BLEU PARENT BLEU PARENT

LLaVA 13B 12.6 34.36 5.9 23.18 6.7 20.14
T5-base 220M 16.8 55.97 11.5 40.02 7.9 30.67
T5-3B 3B 17.7 52.75 10.9 35.45 9.5 29.47
Lattice 220M 19.8 61.05 11.5 40.02 11.7 38.12
CoNT 220M 18.8 61.73 11.8 43.25 11.0 36.94
PixT3 282M 20.6 61.86 21.5 56.45 11.4 35.68

4.2 Table – Evaluation results on Logic2Text across the three generation set-
tings: tightly controlled (TControl), loosely controlled (LControl), and open-
ended (OpenE). All models, except LLaVA, were fine-tuned on ToTTo and tested
on Logic2Text. BLEURT scores are provided in Appendix C.5.

ness, with performance only decreasing for very large tables. As previously men-
tioned, token and patch context lengths are analogous, and while other models use
a context length of 512 tokens, PixT3 uses a context length of 2048. To determine
if the improved performance of our model is solely due to the increased context
length, we also trained and evaluated a version of PixT3 with an input length of
512 patches. We can see how, while the smaller PixT3 model showed slightly
lower performance, it still consistently outperformed the other models.

Structure Learning Curriculum Improves Generation

In Table 4.3, we present an ablation study comparing PixT3 with and without the
structure learning curriculum and self-supervised objective (Section 4.2.4). Both
models underwent the same fine-tuning process with the same hyper-parameters
and rendered tables described in Section 4.2.3. The baseline PixT3 model (second
row in Table 4.3) shows a significant improvement over the standard Pix2Struct
model, which achieved a BLEU score of 0.2 and a PARENT score of 0.6 on the
ToTTo development set. Adding the intermediate training curriculum further im-
proves PixT3’s performance, though the gains are modest across evaluation met-
rics.

A manual inspection of the descriptions generated by both PixT3 variants re-
vealed that they are semantically equivalent to the target 43% of the time. How-
ever, the intermediate training curriculum greatly reduces structure-based faith-
fulness errors, especially in the OpenE setting. In a sample of 200 outputs ran-
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4.5 Figure – Model performance (CoNT, T5, PixT3, Lattice, and PixT3 with
512-patch input size) in the loosely controlled setting across 18 table size groups
(logarithmic scale). Shaded areas represent the upper and lower bounds for over-
lapping and non-overlapping ToTTo splits, while central points show overall re-
sults. Results are measured with PARENT; other metrics show similar trends.
For more details, see Appendix C.1.

domly selected from the development set, 23% of the descriptions produced by
the baseline PixT3 failed to accurately capture the table’s structure or misinter-
preted it. When PixT3 was trained with the structure learning curriculum, these
errors dropped to just 7%.

PixT3 is Most Faithful in Loosely Controlled and Open-Ended Settings

We also conducted a human evaluation to assess the faithfulness of generated de-
scriptions to the original table data. Participants1 were asked to judge whether the
descriptions were "True" or "False" based on the provided table information, that
is, image of a table, and its Wikipedia page and section titles (see the complete in-
structions in Appendix C.7). PixT3 was compared to the top-performing text-only
models, CoNT and Lattice, across 100 randomly selected table-description pairs

1Participants were recruited using the online platform Prolific. https://www.prolific.
com
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Dev Test

Models BL PR BRT BL PR BRT

Pix2Struct 0.2 0.6 −1.433 — — —
PixT3 (W/o SLC) 38.7 46.0 −0.003 38.3 45.6 0.001
PixT3 (With SLC) 39.2 46.5 0.008 38.7 46.3 0.007

4.3 Table – Comparison of PixT3 with and without structure learning curriculum
(SLC). Results are reported on the ToTTo development (Dev) and test sets, with
BLEU (BL), PARENT (PR), and BLEURT (BRT) metrics averaged across the
three generation settings.

from ToTTo (development set) and Logic2Text (test set). Overall we elicited 7,200
judgments (100 examples × 3 generation settings × 4 model descriptions × 3 par-
ticipants × 2 datasets).

In Table 4.4 we see the results of the human evaluation, showing the propor-
tion of descriptions rated as faithful. As expected, the human-authored reference
descriptions were consistently rated as faithful across all generation settings. Fol-
lowing the results of the automatic evaluation, text-based models performed better
in the TControl setting but showed a decline in faithfulness in the LControl and
OpenE settings. We used paired bootstrap resampling to determine whether the
differences between systems were statistically significant. In the TControl setting,
PixT3 performed significantly worse than the reference human-made descriptions
(p < 0.05), but there was no significant difference compared to CoNT or Lattice.
In the LControl setting, all differences between systems were statistically signif-
icant (p < 0.05). In the OpenE setting, PixT3 was significantly different from
CoNT and Lattice (p < 0.05), but not from the reference. The inter-evaluator
agreement was moderate, with a Fleiss’ Kappa coefficient of 0.55 (Fleiss, 1971).

4.4 Conclusions

In this work, we leveraged the strengths of Vision Transformers to redefine table-
to-text generation as a visual recognition task, eliminating the need to linearize
table inputs into a string format. Our proposed model, PixT3, introduces a novel
training curriculum and a self-supervised learning objective designed to capture
the structure of tables. Through experiments in both controlled and open-ended
generation settings, PixT3 demonstrated its robustness across various table sizes,
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Model TControl LControl OpenE

Reference 87 84 89
Lattice 79 16 20
CoNT 76 16 35

To
T

To

PixT3 69 72 78

Reference 81 87 86
Lattice 34 3 16
CoNT 35 3 26L

2T

PixT3 32 40 60

4.4 Table – Human evaluation results on ToTTo and Logic2Text. Proportion of
descriptions rated as faithful for PixT3, CoNT, and the human-authored refer-
ence descriptions across three generation settings: tightly controlled (TControl),
loosely controlled (LControl), and open-ended (OpenE).

outperforming state-of-the-art models in tasks where the table is part of the input,
in both open-ended and controlled scenarios, while remaining competitive when
only provided with the context-selected values of the table. Furthermore, PixT3
showcases strong generalization to new domains, as shown by its performance
on Logic2Text, a dataset we introduced to assess the ability of models to handle
unseen tables.

There are several promising directions for future research. Expanding this
pixel-based approach to develop a more general model that can handle a wide
range of Table Understanding tasks would be a valuable direction of study. Addi-
tionally, exploring new training objectives and inductive biases to better capture
table structure and inter-cell relationships in this modality would significantly con-
tribute to advancements in the Table Understanding research area.

62



5. CHAPTER

Multimodal Table Understanding

5.1 Motivation and Contributions

Following the findings of our previous work, which explored table-to-text gen-
eration from a multimodal perspective, in this final contribution of the thesis we
wanted to determine whether the benefits of treating tables as visual data could be
extended to a broader set of Table Understanding (TU) tasks.

Previous attempts to tackle TU from a multimodal perspective have relied
on text-based representations converted into images. This includes our previ-
ous work, in which we trained and evaluated our multimodal table-to-text model,
PixT3, using image renders of serialized tables from the ToTTo and Logic2Text
datasets. This approach stems from the fact that most commonly used tabular
datasets serialize and store tables as text, making these textual representations the
only available format. Even when other techniques convert these tables into a vi-
sual format, much of the original styling, formatting, and communicative design
elements may already be lost during serialization, potentially discarding essential
contextual information.

Meanwhile, pretraining objectives like next-token prediction and masking have
traditionally helped Language Modeling approaches to capture generalistic lan-
guage patterns and contextual relationships within text, enabling them to better
understand and generate coherent and contextually relevant responses across a
variety of tasks. However, these objectives are not well-suited to TU tasks be-
cause table values are not naturally correlated with their neighboring cells. Prior
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work has thus incorporated objectives centered around Semantic Comprehension,
Structural Awareness, and Relational Understanding of tables, but no consensus
exists on the optimal tasks or combination of tasks for effective TU pretraining
(see Appendix D.1 for a detailed list of objectives used in other works).

Therefore, our goal in this work was to create a dataset for TU that includes
a diverse set of pretraining objectives and preserves the original visual represen-
tations of the tables. Rather than rendering the serialized versions of tables from
current datasets, we traced each table back to its original source to extract its
original, visually lossless representation. This approach allowed us to apply the
multimodal method of PixT3, introduced in our previous work, to directly incor-
porate visual features, enabling models to leverage format and style cues without
compromise while also retaining additional benefits demonstrated by PixT3, such
as improved space efficiency.

In this work we introduce the first multimodal Table Understanding dataset
containing original table images sourced from Wikipedia with 2.5 million instruc-
tion examples and 1.1 million unique table images.

5.2 Methodology

5.2.1 Dataset Overview
Given the advantages of training large language models (LLMs) with instruction-
framed examples that frame each task as a question or command (Chung et al.,
2022), we chose to frame all examples in our dataset as instructions. Our dataset
is composed of instruction examples extracted from three established TU instruc-
tion datasets: TableInstruct (Zhang et al., 2024a), Docstruct4M (Hu et al., 2024),
and MMTab (Zheng et al., 2024). Notably, none of the examples in these datasets
are original; rather, they consist of examples from other datasets reframed as in-
structions. We refer to these three datasets as seed datasets, and collectively, our
dataset includes instruction examples from 11 distinct seed datasets: TURL (Deng
et al., 2020), ToTTo (Parikh et al., 2020), TabFact (Chen et al., 2020b), WikiTable-
Questions (Pasupat and Liang, 2015), HybridQA (Chen et al., 2020c), NSF (Na-
tional Science Foundation, National Center for Science and Engineering Statis-
tics, 2019), StatCan (Statistics Canada, 2024), PubTabNet (Zhong et al., 2020),
TABMWP (Lu et al., 2023a), TAT-QA (Zhu et al., 2021), and InfoTabs (Gupta
et al., 2020).

Additionally, we augmented our dataset with instruction examples that we
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generated from seed examples absent in the original instruction dataset instances
that were not incorporated by the authors of those datasets. To generate these addi-
tional examples, we replicated the templates used within each instruction dataset,
reframing the original input/output seed examples as instructions. This expan-
sion not only increased the number of training examples available in our dataset
but also enabled us to achieve a 1:1 alignment between our test sets and the seed
test sets in terms of examples. This alignment allows our test sets to be directly
comparable to those in other studies evaluated on the seed datasets. In total, our
dataset includes 2,557,405 instruction examples paired with 1,142,250 tables.

Original Images

When building our dataset, we focused exclusively on instructions whose tables
could be traced back to their original visualizations, primarily from Wikipedia
tables. Wikipedia tables generally follow an irregular table web format and are
often rich in visual information. We traced each table in our seed dataset back to
its original version in the corresponding Wikipedia article and stored a screenshot
of it as the table’s visual representation. Each screenshot serves as a lossless repre-
sentation of the original table, preserving all information intended to be conveyed
to the reader.

During the table retrieval process, we leveraged all available metadata from
the seed datasets to locate the original Wikipedia articles as they existed at the
time of dataset creation. A significant challenge in obtaining each table’s original
representation was that these datasets were constructed at different times, and
Wikipedia articles are continually updated. To address this, we used Wikipedia’s
archiving system to retrieve each article as it appeared on the date of crawling.
For seed datasets without a publicly available crawling date, we contacted the
respective authors to obtain it.

From all tables in the retrieved Wikipedia article, we selected the table with the
highest Levenshtein edit distance (Levenshtein, 1966) similarity to the serialized
version in the dataset. We set a minimum similarity threshold of 0.70; if no tables
met this threshold, the table was not retrieved.

While we place significant importance on Wikipedia tables due to their visual
diversity, we also incorporate other table sources to enhance generalization of
models trained with our dataset. Additional sources include scientific articles for
PubTabNet tables and rendered tables from MMTab, TABMWP, DocStruct4M, as
well as our own rendering engine. The distribution of table sources across each
split and complexity level (See Section 5.2.1) is presented in Figure 5.1.
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Wikipedia

Error

PubTabNet

TABMWP
DocStruct4M

Render

62%

18%

16%
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2%
1%

5.1 Figure – Dataset table source distribution.

Missing Tables

As mentioned, we were unable to retrieve 12.3% of tables, invalidating about
18% of our dataset’s instruction examples (Appendix D.2 contains common er-
ror types). These missing tables rendered their associated instructions unusable
for training, though we retained all instruction examples in the test set to ensure
comparability with other works. Table 5.1 provides a summary of the final dataset
composition, showing the number of instruction examples (instruction + table)
available for each task.

The only task that originates directly from one of the instruction datasets (Doc-
Struct4M) is Structure Aware Parsing. Specifically, this task requires the model
to linearize a table into markdown format. By accessing the full set of original
tables and replicating the instruction templates used in the instruction dataset, we
were able to generate additional training examples for the training set. In contrast,
the limited number of functional examples in the test set is not due to errors ob-
taining the associated tables but rather to the challenge of tracing back instruction
examples based on TURL tables in this instruction dataset.

Task Breakdown

This dataset contains 12 Table Understanding (TU) tasks, which we classify into
two complexity levels, referred to as stage 1 and stage 2, (each level is directly re-
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Task Train (%) Dev (%) Test (%)
Column Type Annotation 78.4 81.5 81.9
Entity Linking 75.1 76.1 73.7
Relation Extraction 83.8 83.4 84.2
FeTaQA 87.8 - 91.6
HiTab 96.0 - 95.9
TabFact 100.0 47.6 40.5
Structure Aware Parsing *124.4 100.0 56.3
Table Numerical Reasoning 100.0 - 100.0
Infotabs 30.0 27.5 37.0
ToTTo 88.1 87.2 87.7
HybridQA 90.7 92.5 89.8
WikiTableQuestions 92.6 92.8 93.7

5.1 Table – Percentage of original tables obtained for each task. (*) additional
training examples were created by replicating the dataset’s template.

lated to training stages in current model training strategies). Stage 1 includes tasks
based on fundamental Table Understanding principles, such as Semantic Compre-
hension, Structure Awareness, and Relational Understanding of tables and their
entities. This stage contains the majority of examples (2.2 million). In stage 2, we
include tasks that require not only a solid understanding of table mechanics but
also additional processing skills, such as Table Question Answering (TableQA),
table-to-text generation, Table Numerical Reasoning, and Table Fact Checking.
There are 353,000 examples in stage 2.

Figure 5.2 shows the distribution of examples across tasks in the Stage 1 and
Stage 2 training sets. Note that the number of examples per task in the test and
development sets is less relevant, as each task is evaluated independently.

For a more detailed breakdown, the tasks in this dataset include:

• Column Type Annotation: In this task, the model is provided with a table
and a set of 255 "data type" candidates, shuffled randomly for each example.
Given the column name and cell values to avoid column name ambiguity,
the model must select the correct data type for the values in the column.
This task instills table Semantic Comprehension into the model. Instruction
examples for this task were obtained from TableInstruct being TURL as the
seed dataset. Our dataset includes 492,708 / 10,918 / 10,670 (train / dev /
test) instructions for this task.
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(a) Stage 1 (b) Stage 2

5.2 Figure – Task distribution across Stage 1 and Stage 2 complexity levels.

• Entity Linking: For this task, the model is given an entity from a ta-
ble along with a set of candidate entities and descriptions and must iden-
tify which entity and description corresponds to the selected entity. This
task promotes Semantic Comprehension. Instruction examples come from
TableInstruct, with TURL as the seed dataset. Our dataset includes 949,376
/ 58,417 / 166,465 (train / dev / test) instructions for this task.

• Relation Extraction: This task requires the model to select appropriate
relations between two specified columns of a table from a set of candidates.
Similar to Column Type Annotation, both column and entities are given
to avoid column name ambiguities. Instruction examples are sourced from
TableInstruct, with TURL as the seed dataset. Our dataset includes 52,725
/ 1,813 / 1,745 (train / dev / test) instructions for this task.

• Structure Aware Parsing: Here, the model needs to parse the table into
markdown format, fostering Table Structure Awareness. Instruction exam-
ples come from Docstruct4M, with PubTabNet as the seed dataset. Our
dataset includes 513,412 / 9,115 / 1,102 (train / dev / test) instructions for
this task.

• Free-form Table Question Answering (FeTaQA): In this task, the model
generates free-form answers to questions about Wikipedia tables, often re-
quiring integration of information from discontinuous sections of the table.
Unlike datasets with shorter text spans, FeTaQA emphasizes a higher-level
understanding through long-form answers. This Stage 2 task requires pro-
ficiency in Semantic Comprehension, Relational Understanding, Structure
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Awareness, Natural Language Generation, and Question Answering. In-
struction examples come from TableInstruct based on FeTaQA. Our dataset
contains 6,430 / 0 / 1,834 (train / dev / test) instructions for this task.

• Hierarchical Table QA (HiTabQA): This question-answering task involves
hierarchical tables (with different headers across the table) and sometimes
includes numerical reasoning, such as sums, averages, maximum, mini-
mum, and conting among others. It is a Satage 2 task requiring Semantic
Comprehension, Relational Understanding, Table Structure Awareness, Nu-
merical Reasoning, and Question Answering. Instructions were obtained
from TableInstruct, with tables from seed datasets ToTTo, StatCan, and
NSF. Our dataset contains 7,119 / 0 / 1,519 (train / dev / test) examples.

• Table Fact Verification (TabFact, Infotabs): Also known as Table Entail-
ment, this task involves classifying statements as supported or refuted based
on table content. Solving this Stage 2 task requires Semantic Compre-
hension, Relational Understanding, Structure Awareness, Numerical Rea-
soning, and Symbolic Reasoning. Instruction examples come from Table-
Instruct and MMTab, based on examples from TabFact and Infotabs seed
datasets. Our dataset includes 92,758 / 6,084 / 5,173 (train / dev / test) Tab-
Fact examples and 4,966 / 495 / 1,998 (train / dev / test) Infotabs examples.

• Table Numerical Reasoning: Given a table and a mathematical question,
the model must answer using mathematical reasoning over table values.
This Stage 2 task emphasizes Numerical Reasoning alongside Semantic
Comprehension, Relational Understanding, and Table Structure Awareness.
Instruction examples come from MMTab, with seed datasets TABMWP and
TAT-QA. Our dataset includes 36,665 / 0 / 8,458 (train / dev / test) examples.

• Table-to-Text (ToTTo): Known from our previous work, in this task the
model needs to generate a description based on a Wikipedia table and a
set of highlighted cells. Besides making the model contextualize specific
data fields in the table, this Stage 2 task also requires proficiency in Natural
Language Generation, Semantic Comprehension, Relational Understand-
ing, and Table Structure Awareness. Instructions were generated by us fol-
lowing the test set template of TableInstruct, with original examples from
ToTTo. Our dataset contains 106,414 / 6,715 / 6,750 (train / dev / test)
examples.

69



5 MULTIMODAL TABLE UNDERSTANDING

• Hybrid QA (HybridQA): This multi-hop question-answering task requires
integrating structured table data and unstructured hyperlinked passages. That
is, given a Wikipedia table and a set of contextual texts linked to the ta-
ble’s entities, the model needs answer a multi-hop question using informa-
tion from both sources. This Stage 2 task demands Semantic Comprehen-
sion, Relational Understanding, Structure Awareness, Numerical Reason-
ing, Multimodal Reasoning, and Question Answering. Instructions were
generated using the TableInstruct template, with original examples from
HybridQA. Our dataset contains 43,737 / 2,485 / 3,111 (train / dev / test)
examples.

• Table QA (WikiTableQuestions): Given a Wikipedia table and a question,
the model must answer based on table content. This Stage 2 task mainly
focuses on Question Answering but also requires Semantic Comprehension,
Relational Understanding, and Structure Awareness. Instruction examples
are sourced from TableInstruct, with WikiTableQA as the seed dataset. Our
dataset includes 13,098 / 3,284 / 4,070 (train / dev / test) instructions.

5.3 Experiments

5.3.1 Experimental Setup
Our dataset emphasizes the preservation of original visualizations of tables, dif-
ferentiating it from other image-based Table Understanding approaches such as
MMTab (Zheng et al., 2024). To demonstrate that the dataset is well-structured
and effective for TU, it would ideally be used for both continuous pretraining
stages. However, due to resource constraints, the Stage 1 pretraining was left for
future work. This experiment focuses on Stage 2 fine-tuning of a backbone model
to check two key aspects: 1) that our dataset enables the model to achieve bet-
ter results compared to the backbone alone, and 2) that it compares favorably to
state-of-the-art systems.

Model Configuration

For this experiment, we selected mPLUG-DocOwl 1.5 (Hu et al., 2024) as the
backbone model due to its specialized architecture for encoding visually rep-
resented text, which is a fundamental characteristic when working with tabular
data. Built on the strong foundation of mPLUG-Owl2 (Ye et al., 2023), which has
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demonstrated significant performance in other Vision-Language Modeling tasks,
mPLUG-DocOwl 1.5 incorporates a H-reducer module between its vision and
text encoders. This module, which combines horizontally related image patches,
allows for an efficient representation of images with written text in horizontally
scripted languages. Furthermore, Hu et al. (2024) conducted a two-stage con-
tinuous pretraining of mPLUG-DocOwl 1.5 on their DocStruct4M dataset. This
dataset includes tables, some of which are present in our dataset under the Struc-
ture Aware Parsing task, alongside additional training samples generated by repli-
cating DocStruct4M’s templates.

To test the efficacy of our dataset, we replaced mPLUG-DocOwl 1.5’s Stage 2
fine-tuning with our own Stage 2 subset. We followed the training procedure out-
lined by Hu et al. (2024), replacing DocStruct4M with our dataset during Stage
2. That is, we initialized the model with the model parameters from the first stage
of continuous pretraining and contunied the Stage 2 training with the examples
from our dataset. Training was conducted across 8 nodes, each equipped with 4
NVIDIA Hopper H100 64GB GPUs, for 6,500 steps. A detailed list of hyperpa-
rameters is available in Appendix D.3.

Model Comparison

We compare our model with two state-of-the-art TU models: the multimodal
image-based TableLLaVA (Zheng et al., 2024) and the unimodal text-based TableL-
lama (Zhang et al., 2024a). TableLLaVA is built on the LLaVA (Liu et al., 2023b)
architecture, continuously pretrained on the MMTab dataset, while TableLlama is
based on the LLaMA (Touvron et al., 2023) architecture, continuously pretrained
on the TableInstruct dataset. Despite their differences in modality, both models
are instruction-based TU models.

We evaluated all models using the test sets from the Stage 2 tasks in our
dataset: FeTaQA, HybridQA, InfoTabs, TabFact, TABMWP, HiTabQA, and Wik-
iTableQuestions (WikiTQ). For TAT-QA and ToTTo, we used their development
sets instead of the test sets, as gold references were not available for the latter. We
selected the most commonly used metrics to report performance in each dataset,
namely BLEU4 (Papineni et al., 2002) for FeTaQA and ToTTo, and strict match
accuracy for the others. For HybridQA, however, accuracy is calculated based on
whether the reference text appears in the generated sequence rather than relying
on exact match. We follow this approach to ensure a fair evaluation of other mod-
els’ responses, as many were correct but did not adhere to the reference format,
often being more verbose than the reference text.
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Model FeTaQA HiTab HybridQA InfoTabs TabFact TaBMWP TAT-QA ToTTo WikiTQ
Baseline 2.5* 17.6* 35.5* 29.9* 68.3 10.9* 12.7* 10.1* 33.7
Ours 66.0 41.9 50.7 60.2 72.9 86.2 43.7 41.6 32.2

5.2 Table – Evaluation results for mPLUG-DocOwl 1.5 (Baseline) and the same
model architecture but replacing its Stage 2 training examples with the examples
in our dataset (Ours). Metrics include BLEU4 for FeTaQA and ToTTo, and exact
match accuracy for other tasks. (*) Indicates a dataset whose train set was not
present in that model’s training.

5.3.2 Results

Table 5.2 compares the original mPLUG-DocOwl 1.5, pretrained on both Stage 1
and Stage 2 of DocStruct4M, against a version where Stage 1 pretraining remains
unchanged, but Stage 2 fine-tuning is performed using our dataset’s Stage 2 ex-
amples. The results highlight that our model outperforms the baseline in 8 out
of 9 evaluation tasks. Interestingly, the high performance of the baseline model
on TabFact and WikiTQ can be attributed to the inclusion of these datasets during
DocReason25K training, alongside DocStruct4M. Other datasets, marked with (*)
were not present during the baseline’s original training. While our model signif-
icantly outperformed MMTab in these tasks (See Table 5.3), the difference from
the baseline was less pronounced, with a 4.6% accuracy improvement on TabFact
and a 1.5% decline on WikiTQ.

To compare our model with other state-of-the-art approaches, we evaluated
all models using the same examples as those in our test sets. As discussed in
Section 5.2.1, our inability to retrieve all original table visualizations resulted in
a reduced subset of effective examples (those containing both the table and in-
struction) in our test sets compared to the original datasets. Table 5.1 shows the
proportion of effective examples from the original datasets included in our test
sets. To ensure a fair comparison and preserve the original instruction format and
table representation of each dataset, we evaluated all models on the equivalent ex-
amples from their respective datasets. Specifically, TableLLaVA was evaluated on
MMTab’s test sets, and TableLlama on TableInstruct’s test sets, with any examples
not present in our dataset’s test sets filtered out.

The results in Table 5.3 show that our model outperforms Table-LLaVA and
TableLlama in 8 and 7 out of 9 evaluation tasks, respectively. However, it still falls
behind TableLlama in 2 of the three datasets included in TableLlama’s training.
While the quantity and diversity of examples in our dataset likely contributed to
our model’s superior performance over Table-LLaVA, we hypothesize that the pri-
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Model FeTaQA HiTab HyQA InfoTabs TabFact TaBMWP TATQA ToTTo WikiTQ
DocOwl1.5 (Ours) 66.0 41.9 50.7 60.2 72.9 86.2 43.7 41.6 32.2
Table-LLaVA (7B) 25.8 10.4 35.6* 63.0 53.7 57.9 16.7 26.1 11.1
TableLlama 39.1 59.8 36.5* 10.2* 82.9 11.2* 6.3* 21.5* 17.1*

Reported
Table-LLaVA (7B) 25.6 10.9 - 65.3 59.8 57.8 12.8 23.0 18.4
Table-LLaVA (13B) 28.0 10.8 - 66.9 65.0 59.8 15.6 24.1 20.4
TableLlama 39.1 64.7 39.38* - 82.6 - - 20.8* 35.0*

5.3 Table – Evaluation results for mPLUG-DocOwl 1.5 fine-tuned on our Stage
2 dataset, compared with the state-of-the-art multimodal Table Understanding
model TableLLaVA and the unimodal text-based model TableLlama. Results
reported for these models in their original papers, evaluated over the full test set,
are also included for reference. Metrics include BLEU4 for FeTaQA and ToTTo,
and accuracy for other tasks. HybridQA (HyQA) accuracy is calculated based on
whether the reference text is present in the generated sequence, rather than exact
match. See Appendix D.4 for detailed results on exact match accuracy. Notably,
exact match accuracy follows a similar trend, further highlighting the advantage
of our model. (*) Indicates a dataset whose training set was not included in the
model’s training data.

mary factor is the proficiency of mPLUG-DocOwl 1.5 in handling visually repre-
sented text. Unlike Table-LLaVA’s backbone model, LLaVA, which was primarily
pretrained on natural images, mPLUG-DocOwl 1.5 was specifically adapted for
Document Understanding tasks. Replacing Table-LLaVA’s backbone with a more
text-oriented multimodal model, such as LLaVAR (Zhang et al., 2023), could help
determine whether the differences in performance are due to LLaVA’s limited ca-
pabilities in visually situated text tasks.

Overall, our results demonstrate the high quality of our Stage 2 dataset, as
training a baseline model on this dataset enables it to outperform current state-of-
the-art VLMs across a wide range of tasks. Furthermore, it makes these models
competitive with, and in some cases superior to, widely used text-based unimodal
approaches.

5.4 Conclusions

Our dataset presents a unified, multimodal perspective on 11 widely-used table
datasets and, at the time of writing, is the largest multimodal Table Understanding
dataset available. It offers a broad range of examples and surpasses contempo-
rary datasets, like MMTab, in scale. Additionally, our dataset includes original
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images for Wikipedia-based tables and traces each example through the instruc-
tion dataset, back to the seed dataset, and ultimately to the original source. This
traceability is a significant advantage, as most instruction datasets lack such de-
tailed connections. Finally, we introduce a dedicated development set, a valuable
contribution since most instruction datasets do not include a development set.

Empirical results demonstrate that our Stage 2 dataset is of high quality, as
training a baseline model on it allows the model to outperform current state-of-
the-art VLMs across a diverse set of tasks. Additionally, it enables these models
to be competitive with, and sometimes exceed, the performance of widely used
text-based unimodal approaches.

We leave the evaluation of the contributions of our Stage 1 subset for future
work, which has the potential to push performance even further, as it contains
more than six times the number of instructions in Stage 2. The publication of the
dataset and related experiments is currently under preparation.
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Conclusions and Future Research

6.1 Conclusions

In this thesis, we introduced a comprehensive approach to address challenges in
table-to-text generation, beginning with enhancing faithfulness through logical
form generation for regularly structured tables. We then moved to irregularly
structured tables by applying table image representations using Vision Transform-
ers, and finally extended our findings in table representation to the broader field of
Table Understanding by introducing a unified multimodal tabular dataset. These
contributions represent significant advancements in improving factual accuracy,
structural understanding, and dataset diversity for Table Understanding applica-
tions, with a particular focus on table-to-text. Below, we summarize the primary
contributions of this research.

Automatic Logical Forms Improve Fidelity in Table-to-Text Generation The
first contribution of this thesis is the development of the T lT system, which en-
hances table-to-text generation by introducing an intermediate logical form gen-
eration stage. Our approach demonstrates that automatically generating logical
forms substantially improves faithfulness and factual accuracy, showing a 67%
increase in fidelity over baseline models. By separating content selection from LF
generation, we further confirmed the advantages of incorporating logical forms
in the generation pipeline, with LF-conditioned generation having the greatest
impact on factual accuracy. This intermediate logical form representation enables
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automated validation before natural language generation, adding a layer of robust-
ness and reliability to the final output. This contribution marks a meaningful step
toward more accurate and reliable table-to-text applications, with logical forms
serving as a foundation for verifiable, factually consistent output.

Pixel-based Table-To-Text Generation Our second contribution explores the
use of Vision Transformers to redefine table-to-text generation as a visual recog-
nition task. Our model, PixT3, introduced a pixel-based approach that removes
the need to linearize table inputs, a common limitation in previous models. By
treating tables as visual entities and training PixT3 on a new image-based struc-
ture learning curriculum, we achieved robust structural understanding across a
range of table sizes and formats. In fact, PixT3 outperforms other baselines in au-
tomatic metrics and human faithfulness evaluation. PixT3’s strong performance
on the Logic2Text dataset also demonstrates its adaptability to previously unseen
tables. Overall, this contribution provides a foundation for developing more ver-
satile and visually aware table-to-text models, highlighting its potential to support
various multimodal applications that require an in-depth structural comprehension
of table data.

A Multimodal Dataset for Table Understanding The third major contribution
of this thesis is the creation of a multimodal, instruction-based Table Understand-
ing dataset that includes 2.5 million examples and 1.1 million original table visu-
alizations. This dataset, the largest of its kind, spans 11 widely-used Table Under-
standing tasks, offering diverse objectives of different complexities appropriate
for the two typical model pre-training stages. It also offers traceability between
examples, a property lacking in most derived datasets, linking each example back
to its source to add transparency and reproducibility. Our dataset further includes
a dedicated development set, another absent resource in most instruction-based
TU datasets, thereby filling a gap in the current data landscape for multimodal
Table Understanding tasks.

Publications Part of the research in this dissertation has been published in peer-
reviewed journals and conferences. Notably, one paper was published in a Journal
Citation Report (JCR) Q1-ranked journal, another in the 2024 ACL main confer-
ence, and a third one is currently under preparation. In addition to these publica-
tions, during the execution of this thesis, I also collaborated on two NLP-related
research projects and was the first author of a peer-reviewed paper published in
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another JCR Q1-ranked journal.

6.2 Future Work
This thesis has made strides in enhancing faithfulness, table representation, and
dataset diversity in table-to-text generation and Table Understanding. However,
several open questions and promising directions remain. This section outlines key
areas for future research, aimed at addressing the current limitations and expand-
ing the capabilities of the methods developed throughout the thesis.

Improving Logical Form-based Systems While logical forms have proven ef-
fective in reducing faithfulness errors in table-to-text generation, our implemen-
tation of LFs remains based on model conditioning, meaning that faithfulness
errors may still occur during the interpretation or verbalization of the semantics
represented by the LF. Future work could focus on enforcing LF semantics more
directly within the generation model, potentially through stricter alignment tech-
niques that ensure final outputs adhere to LF meaning. Additionally, the current
LF grammar is tailored to the Logic2Text dataset, yet natural language encom-
passes a wider range of meanings. Expanding the LFs structure or adopting other
standardized semantic grammars could allow models to handle more diverse rea-
soning and linguistic contexts.

Currently, LFs are designed for regular tables, however, tables in practice of-
ten present a wider spectrum of formats. Adapting LFs to work with irregularly
structured tables would allow these benefits to extend across a broader array of
tables and domains. Finally, considering the crucial role that content selection
plays in table-to-text generation, future research could focus on leveraging user
preferences within training data to allow automated content selection in future
models.

Extending Vision Transformers to Table Understanding The results achieved
with PixT3 suggest several promising directions for future work as well. Extend-
ing the model to support a wider array of Table Understanding tasks could transfer
its benefits to other areas of Table Understanding. Additionally, refining training
objectives to capture cell-to-cell relationships more effectively could further im-
prove PixT3’s understanding of table structures.

In our research, we have also demonstrated that current Vision-Language Mod-
els are capable of addressing complex tasks involving visually represented text.
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6 CONCLUSIONS AND FUTURE RESEARCH

Future studies could extend this work, moving beyond Table Understanding to
explore the application of our approach in other areas, such as Chart Understand-
ing.

Leveraging our Multimodal Table Understanding Dataset Finally, the dataset
introduced in the last chapter also opens the door to exploring a wide range of re-
search questions. Including, evaluating the impact of fully pretraining TU models
on both Stage 1 and Stage 2 subsets of our dataset, identifying which Table Un-
derstanding tasks benefit most from representing tables as images, and assessing
the extent to which preserving tables in their original visual form enhances perfor-
mance on tasks initially designed for serialized data. Additionally, future research
could also explore how multimodal models process table data, examine the im-
pact of dataset contamination, and research the role of parametric knowledge in
improving task performance on datasets based in real-world data.
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A B S T R A C T

Table-to-text systems generate natural language statements from structured data like tables. While end-to-end
techniques suffer from low factual correctness (fidelity), a previous study reported fidelity gains when using
manually produced graphs that represent the content and semantics of the target text called Logical Forms
(LF). Given the use of manual LFs, it was not clear whether automatic LFs would be as effective, and whether
the improvement came from the implicit content selection in the LFs. We present 𝐓𝓵𝐓, a system which, given
a table and a set of pre-selected table values, first produces LFs and then the textual statement. We show
for the first time that automatic LFs improve the quality of generated texts, with a 67% relative increase in
fidelity over a comparable system not using LFs. Our experiments allow to quantify the remaining challenges
for high factual correctness, with automatic selection of content coming first, followed by better Logic-to-Text
generation and, to a lesser extent, improved Table-to-Logic parsing.

1. Introduction

Data-to-text generation is the task of taking non-linguistic struc-
tured input such as tables, knowledge bases, tuples, or graphs, and
automatically producing factually correct1 textual descriptions of the
contents of the input (Covington, 2001; Gatt & Krahmer, 2018; Reiter &
Dale, 1997). Real-world applications include, among others, generating
weather forecasts from meteorological data (Goldberg, Driedger, &
Kittredge, 1994), producing descriptions from biographical informa-
tion (Lebret, Grangier, & Auli, 2016), or generating sport summaries
using game statistics (Wiseman, Shieber, & Rush, 2017). In these ap-
plications, the goal is to represent relevant information in the input
data using natural language descriptions. Therefore, generating text
that faithfully and accurately represents the underlying information
in the source becomes critical. It should be noted that the task is
underspecified, in the sense that the same table may be described
by multiple textual descriptions, all of them correct, as each one can
focus on different, relevant subsets of the input data. This makes the
use of manual evaluation of fidelity key to measure the quality of
the generated text. Our work focuses on how to improve faithfulness
automatically.

Various Data-to-Text approaches have emerged to address this chal-
lenge. Methods include leveraging the structural information of the
input data (Chen, Su, Yan, & Wang, 2020; Puduppully, Dong, & La-
pata, 2019b; Wiseman et al., 2017), using neural templates (Wiseman,
Shieber, & Rush, 2018), or focusing on content ordering (Puduppully,

∗ Corresponding author.
E-mail addresses: inigoborja.alonso@ehu.eus (I. Alonso), e.agirre@ehu.eus (E. Agirre).

1 We use the terms factual correctness, faithfulness, and fidelity indistinctly.

Dong, & Lapata, 2019a). Recent techniques (Aghajanyan et al., 2022;
Chen, Chen, Su, Chen, & Wang, 2020; Chen, Chen, Zha et al., 2020;
Kasner & Dusek, 2022) leverage large-scale pre-trained models (Devlin,
Chang, Lee, & Toutanova, 2019), and report significant performance
gains in terms of fluency and generalization with respect to previous
work that did not use such models.

However, these end-to-end systems struggle with fidelity as they
are still susceptible to produce hallucinations, i.e. they generate text
that, despite its fluency, does not describe in a faithful way the input
data (Koehn & Knowles, 2017; Maynez, Narayan, Bohnet, & McDonald,
2020).

In this context Chen, Chen, Zha et al. (2020) propose to refor-
mulate Data-to-Text as a Logic-to-Text problem. Alongside the usual
table information, the input to the language realization module in this
approach also includes a tree-structured graph representation of the
semantics of the target text called logical form (LF). Logical forms
follow compositional semantics (Carnap, 1947) to formalize the under-
lying meanings represented in the target text. When provided alongside
tables in this case, the meaning conveyed by LFs is related to a semantic
context as defined in Wang, Liu, Ip, Zhang, and Deters (2014), Zhang
(1994). In this case, the semantic context is given by the table. An
example of how LFs represent this meaning can be seen in Fig. 2.
Although the LFs were applied to tables in this paper, the proposal
could be easily extended to other Data-to-Text problems.

https://doi.org/10.1016/j.eswa.2023.121869
Received 24 April 2023; Received in revised form 18 September 2023; Accepted 26 September 2023
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Fig. 1. Our proposed system to improve fidelity, 𝐓𝓵𝐓, (right) alongside a typical Table-to-Text architecture (left).

With the use of manual LFs, Chen, Chen, Zha et al. (2020) report
an increase in factual correctness from 20% to 82% compared to a
system not using LFs. Manually produced LFs include, implicitly, a
selection of the contents to be used in the description also referred as
Content Selection (CS). Content Selection is the task of choosing the
subset of the table that is to be communicated in the output (Duboue &
McKeown, 2003). LFs inherently provide the content selection within
themselves, and thus models based on manual LFs have an easier task
and a lower probability of producing an unfaithful statement. The
main shortcoming of this approach is that the manual production of
LFs is very costly and it is not realistic to expect table producers to
add formal semantic representations such us LFs for each table that
they produce. Chen, Chen, Zha et al. (2020) left two open research
questions: Firstly, the improvement in faithfulness could come from
the implicit content selection alone, casting doubts about the actual
contribution of LFs. Secondly, it is not clear whether a system using
automatic LFs would be as effective as a system based on manual LFs.
Our goal is to answer these two questions.

In this work we present 𝐓𝓵𝐓 (short from Table-to-Logic-to-Text),
a two-step model that produces descriptions by, first, automatically
generating LFs (Table-to-Logic parsing), and then producing the text
from those LFs (Logic-to-Text generation). Our model (see Fig. 1) allows
Table-to-Text generation systems to leverage the advantages of using
LFs without requiring manually written LFs. We separate the content
selection process from the logical form generation step, allowing to
answer positively to the open questions mentioned above with ex-
periments on the Logic2Text dataset (Chen, Chen, Zha et al., 2020).
Although content selection alone improves results, the best results
are obtained using automatic LFs, with noteworthy gains in fidelity
compared to a system not using LFs. Our results and analysis allow
to estimate the impact in fidelity of the remaining challenges, with
automatic content selection coming first, followed by better Logic-to-
Text generation and to a lesser extent Table-to-Logic parsing. We also
provide qualitative analysis of each step.

All code, models and derived data are publicly available.2

2. Related work

Natural Language Generation from structured data is a long-estab-
lished research line. Over time, multiple techniques have been de-
veloped to solve this task in different ways, such as leveraging the
structural information of the input data (Chen, Su et al., 2020; Liu,
Wang, Sha, Chang, & Sui, 2018; Puduppully et al., 2019b; Rebuffel,
Soulier, Scoutheeten, & Gallinari, 2020; Wiseman et al., 2017), using
neural templates (Li & Wan, 2018; Wiseman et al., 2018) or focusing
on content ordering (Puduppully et al., 2019a; Sha et al., 2018; Su,
Vandyke, Wang, Fang, & Collier, 2021). The use of pre-trained language
models (Devlin et al., 2019; Radford, Wu, Child, Luan, & Amodei...,
2019) has allowed to improve text fluency compared to those early
systems (Aghajanyan et al., 2022; Chen, Chen, Su et al., 2020; Kasner
& Dusek, 2022); however, fidelity remains the main unsolved issue in
all of the aforementioned systems.

A body of research has thus focused on improving factuality. Mat-
sumaru, Takase, and Okazaki (2020) remove factually incorrect in-
stances from the training data. Other proposals take control of the

2 https://github.com/alonsoapp/tlt

decoder by making it attend to the source (Tian, Narayan, Sellam, &
Parikh, 2019), using re-ranking techniques (Harkous, Groves, & Saffari,
2020), or applying constrains that incorporates heuristic estimates of
future cost (Lu et al., 2021). Alternatively, (Li & Rush, 2020; Shen,
Chang, Su, Niu, & Klakow, 2020; Wang, Wang, An, Yu, & Chen, 2020)
rely on heuristics, such as surface matching of source and target, to
control generation.

In a complementary approach to improve factuality, Chen, Chen,
Zha et al. (2020) propose reformulating Table-to-Text as a Logic-to-
Text problem. They incorporate a tree-structured representation of the
semantics of the target text, logical forms (LF), along with the standard
table information. The logical form highly conditions the language
realization module to produce the statement it represents, significantly
improving fidelity results. However, the logical forms in this work are
manually produced by humans, which is unrealistic and greatly reduces
the applicability of this solution in a real-world scenario. Our work
builds on top of this approach, adopting LFs and proposing to generate
them automatically based on table data alone, with the goal of enabling
practical use without sacrificing fidelity.

Automatically generating LFs requires of techniques capable of pro-
ducing a formal representation from text, following a set of pre-defined
grammar rules. This challenge is commonly addressed in so-called
semantic parsing tasks (Radhakrishnan, Srikantan, & Lin, 2020; Yin &
Neubig, 2017), but they have not been applied to table-to-text before.
For instance, Guo et al. (2019) present IRNet, a NL-to-SQL semantic
parser that generates grammatically correct SQL sentences based on
their natural language descriptions. Valuenet, introduced by Brunner
and Stockinger (2021), presents a BERT-based encoder (Devlin et al.,
2019) in IRNet. In this work, we adapted the grammar-based decoder of
Valuenet to produce LFs, which allowed us to show that we can produce
high quality LFs.

3. Model

In this section we first introduce Logical Forms, and then the
model that produces descriptions for tables via automatically produced
Logical Forms.

3.1. Logical forms

The LFs used in this work are tree-structured logical representa-
tions of the semantics of a table-related statement, similar to AMR
graphs (Banarescu et al., 2012), and follow the grammar rules defined
by Chen, Chen, Zha et al. (2020). Each rule can be executed against a
database, a table in this case, yielding a result based on the operation
it represents. As these graphs represent factual statements, the root is a
boolean operation that should return True upon execution. Fig. 2 shows
an example of a table with its caption and logical form.

3.1.1. Logical form grammar
The grammar contains several non-terminals (nodes in the graph,

some of which are illustrated in Fig. 2), as follows:
Stat represents boolean comparative statements such as greater

than, less than, equals (shown as eq in the figure), not equals, most
equals or all equals, among others. This is the root of the LF graph.
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Fig. 2. Example of a table with its caption, a logical form (in linearized and graph forms), its corresponding content selection values and the target statement. Note that w in the
table stands for win. More details in the text.

C refers to an specific column in the input table (attendance and
result in the figure).

V is used for specific values, which can be either values explicitly stated
in the table (w in the figure) or arbitrary values used in comparisons
or filters (52500 in the figure).

View refers to a set of rows, which are selected according to a filter
over all rows. The filters refer to specific conditions for the values in a
specific column, e.g. greater. The figure shows all_rows, which returns
all rows, and also filter_str_eq which returns the rows that contain the
substring ‘‘w’’ in the result column.

N is used for operations that return a numeric value given a view
and column as input, such as sums, averages (shown as avg in the
figure), maximum or minimum values, and also counters.

Row is used to select a single row according to maximum or
minimum values in a column.

Obj is used for operations that extract values in columns from rows
(either views or specific rows). The most common operations are hop
extractors that extract a unique value, for instance str_hop_first extracts
a string from the first row of a given View.

I is used to select values from ordinal enumerations in N and Row
rules, as for instance in order to select the ‘‘the 2nd highest’’ I would
equal to 2.

Please refer to the Appendix C for full details. Keep in mind that Stat,
View, N, Row and Obj are internal nodes that constitute the structure
of the LF (shown in blue in the figure), while column C, value V and
index I nodes are always leaf nodes.

We identified several ambiguities in the original grammar for-
mulation that hindered the training of a semantic parser producing
LFs.

The first one affects all functions that involve strings. Within the
LF execution engine proposed by Chen, Chen, Zha et al. (2020), the
implementation of those functions are divided into two: one that han-
dles numeric and date-like strings, and a strict version for other string
values. As a result, we explicitly represented these as two distinct
functions within the grammar: a group for numerical and date-like
values, and an additional group for other string values, denoted by
the suffix ‘‘_str’’. The second issue addresses an inconsistency with the
hop function. This function, when provided with a Row, returns the
value associated to one of its columns. Although the grammar specifies
that these functions are exclusively applied to Row objects, in 25% of
the dataset examples, the function is used on a View object instead,
which can encompass multiple rows. To address this, we defined a new
function hop_first tailored to these specific situations.

The grammar in Appendix C contains the new rules that fix the
ambiguity issues. We also converted automatically each LF in the
dataset to conform to the unambiguous grammar. The conversion script
is publicly available.

3.1.2. Content selection
To isolate the impact of content selection and full LFs, we extracted

the LF values, allowing us to evaluate model performance with and
without content selection. These extracted values include those explic-
itly stated in table cells, as well as other values existing in the LF but not
explicitly present in the table, such as results of arithmetic operations.
This set of values constitutes the supplementary input to the systems
when using content selection (CS for short), categorized as follows:

• TAB: Values present in a table cell, verbatim or as a substring of
the cell values.
Fig. 2 shows an example, where ‘‘w’’ is a substring in several cells.
72.2% of the values are of this type.

• INF: Values not in the table that are inferred, e.g. as a result of an
arithmetic operation over values in the table. For instance 52,500
in Fig. 2 corresponds to the average over attendance values.
20.8% of Value nodes are INF.

• AUX: Auxiliary values not in the table nor INF that are used in
operations, e.g. to be compared to actual values in cells, as in ‘‘All
scores are bigger than 5.’’. Only 7.1% are of type AUX.

In principle, one could train a separate model to select and generate
all necessary content selection values for input into any Table-to-Text
model, as follows: (1) Choose values from table cells, whether in
full or as substrings (TAB); (2) Infer values through operations like
average, count, or max (INF); (3) Induce values for use in comparisons
(AUX). In order to separate the contribution of content selection and
the generation of LFs, we chose to focus on using content selection
and not yet on producing the actual values. Hence, we derive these
values from the manual gold reference LFs, i.e., human-made reference
logical forms provided in the dataset, and feed them to the models. The
experiments will demonstrate that this content selection step is critical,
and that current models fail without it. We leave the task of automatic
content selection for further research.

3.2. Generating text via logical forms

Our Text-to-Logic-to-Text (𝐓𝓵𝐓) system has two main modules in a
pipeline:
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Fig. 3. Table2Logic architecture, with input in the top and output in the bottom. See text for details.

Given a table, its caption and, optionally, selected content, Ta-
ble2Logic generates an LF; With the same table information, plus the
generated LF, Logic2Text produces the statement text.

3.2.1. Table2Logic module
We frame this model as semantic parsing, adapting the IRNet

grammar-based decoder by Guo et al. (2019) to LFs. More specifically,
we follow the implementation of Valuenet by Brunner and Stockinger
(2021), which is a more up to date revision of IRNet. Both models
are NL-to-SQL semantic parsers that generate grammatically correct
SQL sentences based on their descriptions. We adapted the system to
produce logical forms instead of SQL. The architecture of Table2Logic
is presented in Fig. 3.

We first feed a pre-trained BERT encoder (Devlin et al., 2019) with
the concatenation of the following table data: the caption text, the
table content in linearized form, the column names, and, in some of
our model configurations, a set of content selection values manually
extracted from the associated gold reference LF. The details about
content selection values are presented in Section 3.1.2.

The output embeddings of the CLS token, the caption tokens and the
linearized values in the table are fed into an LSTM decoder (Hochreiter
& Schmidhuber, 1997). At each decoding step, the attention vector
of the LSTM is used by four different pointer networks (Vinyals, For-
tunato, & Jaitly, 2015). Each of these pointer networks specializes
in generating one node type: grammar, Value, Column and Index. We
follow a constrained decoding strategy where a pointer network is
selected based on the node type that should follow the previously
generated ones according to the grammar of LFs. Each of these pointer
networks utilize the previously mentioned attention vector alongside a
set of embeddings. In the case of Value and Column node types, these
embeddings consist of the CS values and column encodings produced
by the BERT model. On the other hand, Index and grammar node types
use a separate set of predefined embeddings associated to each ordinal
index and LF grammar rule respectively.

Following Guo et al. (2019), Table2Logic performs two decod-
ing iterations. In a first iteration, a sketch LF is generated using the
grammar pointer network. The sketch LF consisting only of grammar
related nodes (e.g. those in blue in Fig. 2), where Value, Column and
Index nodes are represented by placeholders that are filled in a second
decoding iteration by the corresponding pointer network.

We follow a teacher-based training strategy to calculate the loss for
each decoding iteration. In the first iteration the loss is calculated by
accumulating the cross entropy loss for each generated grammar node
given the previous gold reference nodes. The sketch is then used to

calculate the cross entropy loss of generating Value, Column and Index
nodes. The weights of the network are updated using the sum of both
loss values.

During inference, we use beam search to produce a set of candi-
dates. In addition, we explore a False Candidate Rejection (FCR) policy
to filter out all LFs in the beam representing a False statement, as they
would lead to a factually incorrect sentence. As previously mentioned
in 3.1, the root node of each LF always consists of a boolean grammar
rule. The structured nature of LFs enables us to automatically execute
them against a data source, in this case, the table. Consequently, each
LF yields either True or False based on the relationships between the
various facts it encompasses. We exploit this property of LFs to discard
all generated LFs that, despite their grammatical correctness, convey a
False statement. Thus, only the candidate LF in the beam that executes
to True with maximum beam probability is be selected. Section 4.3
reports experiments with FCR.

3.2.2. Logic2Text module
For the language realization model we use the top performer in

Chen, Chen, Zha et al. (2020). This model consists on a GPT-2 (Rad-
ford et al., 2019) pre-trained large language model (LLM) fine-tuned
to generate text from tables and human-produced logical forms. The
implementation is rather simple; the input sequence is a concatenation
of the table caption, table headers, and the linearized table content and
logical form. The model, referred to as Logic2Text, receives this input
and generates a sentence that is strongly conditioned by the semantic
represented by the provided LF. The Logic2Text model enables us
to produce natural language statements based on the automatic LFs
produced by our Table2Logic model.

4. Experiments

In this section we report the results on text generation using the
test split of the Logic2Text dataset. We first introduce the dataset, the
different models, the automatic evaluation and the manual evaluation.

4.1. Dataset

We use the dataset introduced by Chen, Chen, Zha et al. (2020),
a human-annotated dataset comprising 4992 open-domain tables ob-
tained from the LogicNLG dataset (Chen, Chen, Su et al., 2020). Each
table is paired with an average of 2 human-written statements de-
scribing facts within the table. Following a predefined questionnaire,
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Fig. 4. Model configurations used in the main experiments.

each annotator describes the logic behind these statements. Subse-
quently, Chen, Chen, Zha et al. (2020) use the given answers to derive
the LFs associated with each statement. The resulting dataset contains a
total of 10,753 examples (8566 train, 1092 dev. and 1095 test) of high
quality human-produced LFs alongside its corresponding statement and
table information. We refert to these manually produced LFs as gold
LFs, in contrast to the automatic LFs produced by our model. As
mentioned in the introduction, Table-to-Text tasks are underspecified,
allowing many other statements (and LFs) not provided in the dataset
to be factually correct and equally informative as the ones in it.

4.2. Model configurations

The configuration of the different models are shown in Fig. 4. All
models take as input the table information, including table caption,
linearized table and column headers. In the top row, we include the
upperbound system 𝐓𝓵𝐓𝑔𝑜𝑙𝑑 , which takes the table plus the manually
produced gold reference LF as input. In the middle row we include our
system 𝐓𝓵𝐓, which is composed by the Table2Logic module and the
Logic2Text module. Both 𝐓𝓵𝐓 and 𝐓𝓵𝐓𝑔𝑜𝑙𝑑 use the same Logic2Text
module, but while the first uses automatically produced LFs, the second
uses manual LFs. 𝐓𝓵𝐓 is evaluated in two variants, with and without
content selection (𝐓𝓵𝐓 and 𝐓𝓵𝐓𝑛𝑜𝐶𝑆 , respectively). Logic2Text uses
default hyperparameters (Chen, Chen, Zha et al., 2020).

The bottom row shows our baselines (T2T, short for Table2Text),
which generate the text directly from table information, with and
without content selection data. Since Logic2Text is based on state-
of-the-art generation (Chen, Chen, Zha et al., 2020), and to ensure
compatibility, both T2T and T2T𝑛𝑜𝐶𝑆 have the share codebase. That is,
T2T uses the same GPT-2 model architecture as in Chen, Chen, Zha
et al. (2020) but trained without LFs. Receiving only the linearized
table (in case of T2T𝑛𝑜𝐶𝑆 ) and, in the case of T2T, the same list of
manual CS values as 𝐓𝓵𝐓.

4.3. Content selection ablation study

In order to develop Table2Logic, we examined the influence of
content selection, along with the impact of rejecting LFs that evaluate
to False (FCR) in development data. Accuracy was computed using
strict equality with respect to any of the manual gold reference LFs.
Both sketch accuracy (using placeholders for non-grammar nodes) and
full accuracy are reported. As mentioned in the introduction, this task
is underspecified, in that multiple LFs which are very different from
the gold reference LFs could be also correct. Still, the accuracy is a
good proxy of quality to discriminate between better and worse models.
The results correspond to the checkpoints, out of 50 epochs, with the
best full accuracy on development. We tuned some hyperparameters on
development and used default values for the rest (see Appendix B for
details).

Table 1 shows the results for different subsets of content selection
values, with the last row reporting results when FCR is used. Without
FCR, the most important set of values are those explicit in the table
(TAB), and the best results correspond to the use of all values, although
AUX values do not seem to help much (in fact, the best non-FCR full

Table 1
Table2Logic: Accuracy (% on dev.) over sketch and full versions of
gold LFs using different subsets of content selection (CS) and FCR in
development. First row for 𝐓𝓵𝐓𝑛𝑜𝐶𝑆 , last row for 𝐓𝓵𝐓, as introduced in
Section 4.

Model Sketch Full

No content selection (𝐓𝓵𝐓𝑛𝑜𝐶𝑆 ) 15.0 4.9

AUX 14.0 6.2
INF 28.7 11.0
TAB 42.6 27.3
TAB, INF 56.5 39.3
TAB, AUX 44.3 28.6
TAB, INF, AUX 58.5 38.9

TAB, INF, AUX + FCR (𝐓𝓵𝐓) 56.0 46.5

results are obtained without using AUX, by a very small margin). The
last row reports a sizeable improvement in accuracy for full LFs when
using FCR, showing that FCR is useful to reject faulty LFs that do not
evaluate to True.

Overall, the full accuracy of 𝐓𝓵𝐓 might seem low, but given that
the gold reference LFs only cover a fraction of possible LFs they are
actually of good quality, as we will see in the next sections.

We also performed an additional ablation experiment where we
removed the table information from the system in the last row (𝐓𝓵𝐓).
The sketch and full accuracies dropped (50.3 and 42.7 respectively),
showing that access to table information is useful even when content
selection is available.

4.4. Automatic evaluation

The automatic metrics compare the produced description with the
reference descriptions in the test split. As shown in Table 2, we report
the same n-gram similarity automatic metrics as in Chen, Chen, Zha
et al. (2020), BLEU-4 (B-4) (Papineni, Roukos, Ward, & Zhu, 2002),
ROUGE-1, 2, and L (R-1, R-2, and R-L for short) (Lin, 2004), along
with two additional metrics BERTscore (BERTs) (Zhang, Kishore, Wu,
Weinberger, & Artzi, 2019) and BARTscore (BARTs) (Yuan, Neubig,
& Liu, 2021) which can capture the semantic similarity between the
ground truth and generation results. The results show that generation
without content selection is poor for both the baseline system and our
system (T2T𝑛𝑜𝐶𝑆 and 𝐓𝓵𝐓𝑛𝑜𝐶𝑆 , respectively). Content selection is key
for good results in both kinds of systems, which improve around 10
points in all metrics when incorporating content selection (T2T and
𝐓𝓵𝐓). Automatic generation of LFs (𝐓𝓵𝐓) allows to improve over the
system not using them (T2T) in at least one point. If 𝐓𝓵𝐓 had access to
correct LFs it would improve 4 points further, as shown by the 𝐓𝓵𝐓𝑔𝑜𝑙𝑑
results. Observe that our results for 𝐓𝓵𝐓𝑔𝑜𝑙𝑑 are very similar to those
reported in Chen, Chen, Zha et al. (2020), as shown in the last row.
We attribute the difference to minor variations in the model released
by the authors.

4.5. Human fidelity evaluation

Given the cost of human evaluation, we selected three models to
manually judge the fidelity of the produced descriptions: the baseline
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Table 2
Automated n-gram similarity metrics for textual descriptions (test). BLEU-4 (B-4), ROUGE-1, 2, and L (R-1, R-2, and
R-L), BERTscore (BERTs) and BARTscore (BARTs). Bottom two rows are upperbounds, as they use manual LFs. See
text for system description. Both BERTs and BARTs correspond to the f1 score. In case of the BARTscore higher is
better.

Model B-4 R-1 R-2 R-L BERTs BARTs

T2T𝑛𝑜𝐶𝑆 16.8 37.7 19.3 31.6 88.8 −4.04
𝐓𝓵𝐓𝑛𝑜𝐶𝑆 15.6 39.0 18.9 32.2 87.9 −4.03

T2T 26.8 55.2 31.5 45.7 91.9 −2.98
𝐓𝓵𝐓 (ours) 27.2 56.0 33.1 47.7 92.0 −2.99

𝐓𝓵𝐓𝑔𝑜𝑙𝑑 31.7 62.4 38.7 52.8 93.1 −2.65
𝐓𝓵𝐓𝑔𝑜𝑙𝑑

a 31.4a 64.2a 39.5a 54.0a - -

a For results reported in Chen, Chen, Zha et al. (2020).

T2T model, our 𝐓𝓵𝐓 model and the upperbound with manual LFs,
𝐓𝓵𝐓𝑔𝑜𝑙𝑑 . For this, we randomly selected 90 tables from the test set
and generated a statement with each of the three models. In order to
have two human judgments per example, we provided each evaluator
with 30 sentences, along with the corresponding table and caption.
The evaluators were asked to select whether the description is true,
false or nonsense according to the caption and the table.This group
of evaluators was comprised of eighteen volunteer researchers unre-
lated to this project. We use Fleiss’ kappa coefficient (Fleiss, 1971) to
measure the inter-evaluator agreement. This coefficient is a statistical
measure used to assess the level of agreement among multiple raters
when categorizing items into different classes. It takes into account
both the observed agreement and the agreement expected by chance. It
is a way to determine the extent to which the agreement among raters
goes beyond what would be expected due to random chance alone. The
coefficient ranges from −1 to 1, where higher values indicate better
agreement beyond chance, while lower values indicate poor agreement.
The evaluation concluded with a strong 0.84 Fleiss’ kappa coefficient.
We discarded examples where there was disagreement.

Table 3 shows the fidelity figures for the three models. After the
evaluation, we noticed that the faithfulness results for 𝐓𝓵𝐓𝑔𝑜𝑙𝑑 in our
experiment matched the figure reported by Chen, Chen, Zha et al.
(2020), so we decided, for completeness, to include in the table their
figures for T2T𝑛𝑜𝐶𝑆 , which should be roughly comparable to the other
results in the table.

In general, the differences in human fidelity evaluation are much
higher than for automatic metrics, which we attribute to widely recog-
nized issues of automatic metrics when evaluating text generation. In
our case, the two most significant issues are the ones affecting n-gram
overlaping metrics (e.g., BLUE, ROUGE). These automatic metrics ex-
hibit insensitivity to semantic and pragmatic quality, making them fail
to capture the semantic and pragmatic nuances of language. This can
lead to models generating text that, despite being technically correct in
terms of word overlap, can still be semantically inaccurate (Zhang et al.,
2019). Furthermore, these metrics can also suffer from a lack of cor-
relation with human judgment, leading to models that could generate
text that is grammatically correct but incoherent and meaningfulness,
yet receives a high score (Moramarco et al., 2022). From low to high,
the results allow us to estimate the separate contributions of each
component in absolute fidelity points:

• Manual content selection improves fidelity in 24 points
(T2T𝑛𝑜𝐶𝑆 vs. T2T) ;

• Automatic LFs improve an additional 30 points (T2T vs. 𝐓𝓵𝐓);
• Manual LFs give 7 points (𝐓𝓵𝐓 vs. 𝐓𝓵𝐓𝑔𝑜𝑙𝑑);
• Perfect Logic2Text generation would yield 18 points (𝐓𝓵𝐓𝑔𝑜𝑙𝑑

vs. 100%).

The figures confirm our contribution: it is possible to produce
logical forms automatically, and they allow to greatly improve fidelity,
with the largest fidelity improvement in the table, 30 absolute points,
which correspond to a 67% improvement over the comparable system
not using LFs. Note that the other improvements are actually gaps

Table 3
Human evaluation fidelity results. Given 90 test samples to three different model
configurations, percentage of generated sentences identified as Faithful, Unfaithful
or Nonsense by evaluators. Answer with full disagreement between evaluators are
discarded.

Model Faithful Unfaithful Nonsense

T2T𝑛𝑜𝐶𝑆
a 20.2a 79.8a –

T2T 44.9 49.3 5.8
𝐓𝓵𝐓 (ours) 75.0 20.3 4.7

𝐓𝓵𝐓𝑔𝑜𝑙𝑑 82.4 13.51 4.1

a For results reported in Chen, Chen, Zha et al. (2020).

Table 4
Logic: Distribution of differing node types (𝐓𝓵𝐓 vs. gold LFs). Fr. for frequency of
node type in differing LFs, Total for overall frequency in gold. Rightmost column for
most frequent confusions (𝐓𝓵𝐓 → gold).

Fr. Total Confusions

Stat 0.38 0.13 greater → less
all equals → most equals
equals → and

C 0.25 0.19 column 3 → column 0
column 1 → column 0

Row 0.16 0.02 row 0 → row 2
row 2 → row 0
row 2 → row 1

View 0.11 0.20 filter_greater → filter_less
filter_greater → filter_eq
filter_eq → all_rows

N 0.05 0.03 sum → avg
avg → sum

Obj 0.03 0.26 str_hop → num_hop
num_hop → str_hop

V 0.01 0.16 value 72 → value 73
value 70 → value 71

I 0.01 0.01 1 → 0

which allow us to prioritize the areas for further research: automatic
content selection (24 pt.), better Logic2Text (18 pt.) and better Ta-
ble2Logic (7 pt.). In the following section we analyze the errors in the
two later modules.

4.6. Qualitative analysis

We performed a qualitative analysis of failure cases in both Ta-
ble2Logic and Logic2Text, as well as examples of factually correct
descriptions generated from LFs different from gold LFs.

4.6.1. Table2Logic
We automatically compared the LFs generated by 𝐓𝓵𝐓 in the

development set that did not match their corresponding gold LFs. Note
that the produced LFs can be correct even if they do not match the
gold LF. We traverse the LF from left to right and record the first
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Table 5
Examples of faithful sentences produced by 𝐓𝓵𝐓 from intermediate LFs that do not match the gold LF.

LF difference Sentences

Similar structure, semantically equivalent 𝐓𝓵𝐓: In the list of Appalachian regional commission counties, Schoharie has the highest unemployment rate.
Human: The appalachian county that has the highest unemployment rate is Schoharie.

Similar structure, semantically different 𝐓𝓵𝐓: Dick Rathmann had a lower rank in 1956 than he did in 1959.
Human: Dick Rathmann completed more laps in the Indianapolis 500 in 1956 than in 1959.

Different structure, semantically different 𝐓𝓵𝐓: Most of the games of the 2005 Houston Astros’ season were played in the location of arlington.
Human: Arlington was the first location used in the 2005 Houston Astros season.

Simpler structure, more informative 𝐓𝓵𝐓: Aus won 7 events in the 2006 asp world tour.
Human: Seven of the individuals that were the runner up were from aus.

node that is different. Table 4 shows, in decreasing order of frequency,
each grammar node type (cf. Section 3.1.1) with the most frequent
confusions.

The most frequent differences focus on Stat nodes, where a different
comparison is often generated. The next two frequent nodes are column
and row selections, where 𝐓𝓵𝐓 selects different columns and rows,
even if 𝐓𝓵𝐓 has access to the values in the content selection. The
frequency of differences of these three node types is well above the
distribution in gold LFs. The rest of differences are less frequent, and
also focus on generating different comparison or arithmetic operations.

4.6.2. Logic2Text
The faithfulness score of descriptions generated from gold LFs

(𝐓𝓵𝐓𝑔𝑜𝑙𝑑) is 82%, so we analyzed a sample of the examples in this
18%. For the sake of space, we include full examples in Appendix D,
which include table, caption, gold LF and generated description. We
summarize the errors in three types:
Comparative arithmetic: Logic2Text miss-represented comparative

arithmetic action rules in the LF in 40% of the cases. This resulted in
cases where the output sentence declared that a given value was smaller
than another when the LF stated it was larger. Logic2Text also seem to
ignore round and most modifiers of comparison operations, producing
sentences with strict equality and omitting qualifiers like ‘‘roughly’’ or
‘‘most’’. The absence of these qualifiers made the produced sentences
factually incorrect.

The reason behind these types of errors remain uncertain. One
plausible explanation could be linked to the limited number of pa-
rameters within the models of this architecture. While these models
are capable of recognizing the need for a comparative rule at a given
step, their size may still be insufficient for effectively distinguishing
between two potential comparisons of the same category, e.g. smaller
and larger. Another contributing factor may be related to the small
amount of occurrences of each type of comparative rule within the
training dataset. Only 44% of LFs in the training set contain any
of the 22 comparative arithmetic action rules. Finally, we must also
highlight that models that do not use LFs also incur in these kind of
errors, showing that these are common errors across different model
architectures and are not exclusive to our specific model.
LF omission: Logic2Text disregarded part of the LF (33% of errors),
resulting in omissions that led to false sentences. Many of these errors
involved omitting an entire branch of the LF, leading, for instance, to
sentences wrongly referring to all the instances in the data instead of
the subset described in the LF.
Verbalization: Logic2Text incurred in wrong verbalization and mis-

spellings (27% of cases). For instance Logic2Text producing a similar
but not identical name like in foulisco instead of francisco.

We attribute the errors to the fact that the generator is based on a
general Language Model such as GPT-2. While these language models
are excellent in producing fluent text, it seems that, even after fine-
tuning, they have a tendency to produce sentences that do not fully
reflect the data in the input logical form. It also seems that the errors
might be explained by the lower frequency of some operations. The
18% gap, even if it is much lower than the gap for systems that do not
use LFs, together with this analysis, show that there is still room for
improvement.

4.6.3. Implications of divergent LF production from gold reference LF
The results in Table 1 show that our Table2Logic system has low

accuracy when evaluated against gold logical forms (46%). On the
contrary, the results in fidelity for the text generated using those au-
tomatically generated logical forms is very high, 75%, only 7 absolute
points lower to the results when using gold logical forms. This high
performance in fidelity for automatic LFs might seem counter-intuitive,
but we need to note that it is possible to generate a correct and faithful
LF that is completely different from the gold logical form, i.e. the
system decides to produce a correct LF that focuses on a different aspect
of the information in the table with respect to the gold LF.

In order to check whether this is actually the case, we manually ex-
amined the automatic LFs from 𝐓𝓵𝐓 that resulted in faithful sentences
in the manual evaluation while being ‘‘erroneous’’, that is, different
from their gold LF references. In all cases, such 𝐓𝓵𝐓 LFs are correctly
formed and faithful, i.e. even if these LFs where ‘‘wrong’’ according
to the strict definition of accuracy, the semantics they represent are
informative and faithful to the source data. Table 5 shows a sample
of the output sentence, with full details including table and LFs in
Appendix E.

We categorized the samples as follows. 69% of them share a similar
LF structure as their corresponding gold references, but with changes
in key Value or Column nodes, making them semantically different. In
15% of the cases the LF had similar structure, but although there were
differences, the LF was semantically equivalent to the gold LF. The rest
of 𝐓𝓵𝐓 LFs (16%) had a different structure, and where semantically
different from reference counterparts, while still being correct and
faithful to the table. This reflects an interesting aspect of reference-
based evaluation. In many cases, generating a sentence that diverges
from the reference does not imply that such a sentence is less faithful,
useful or informative. Thus, the accuracy evaluation with respect to
gold LFs (cf. Table 1) provides an underestimate of the quality of the
produced LFs and texts.

All in all the quality of LFs and corresponding text produced by
𝐓𝓵𝐓 for this sample is comparable to those of the gold LF, and in
some cases more concise and informative. This analysis confirms that
the quality of Table2Logic is well over the 46% accuracy estimate, and
that it can be improved, as the produced text lags 7 points behind gold
LFs.

5. Conclusions and future work

We have presented 𝐓𝓵𝐓 which, given a table and a selection of the
content, first produces logical forms and then the textual statement. We
show for the first time that automatic LFs improve results according
to automatic metrics and, especially, manually estimated factual cor-
rectness. In addition, we separately study the contribution of content
selection and the formalization of the output as an LF, showing a higher
impact in fidelity of the later. In this paper, our focus is on tables.
However, our findings and software can readily be extended to other
structured inputs. Given that the grammar of LFs is independent of the
table format, it can be easily adjusted for other common data-to-text
inputs such as graphs or triplets by modifying its execution engine,
keeping the LFs intact.
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Our contribution enables future Data-to-Text applications to lever-
age the advantages of using factually verifiable logical forms, eliminat-
ing the need of manually constructed LFs. These advantages include a
relative improvement in fidelity of 67% compared to baseline models,
along with the ability to access an intermediate formal representation
within the generation process. This facilitates the automated validation
of a statement’s factual accuracy before generating its corresponding
natural language representation. The improvement in fidelity attained
by our model is relevant for most Data-to-Text applications, where
faithfulness is crucial.

The conducted analysis also enabled us to quantify that content
selection would offer the most substantial performance improvement,
followed to a lesser extent by improved logic-to-text generation, and,
finally, improved table-to-logic generation. In the future, we plan to
focus on automatic content selection, which we think can be largely
learned from user preference patterns found in the training data. Recent
advances in semantic parsing, e.g. the use of larger language mod-
els (BigScience Workshop, 2022; Raffel et al., 2020; Zhang et al., 2022),
could also be easily folded in our system and would further increase the
contribution of LFs. Finally, we also plan to make use of our qualitative
analysis to explore complementary approaches for improving factual
correctness in logic-to-text.
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Appendix A. Training procedure

All experiments where carried out in a machine with a GPU NVIDIA
TITAN Xp 12 GB. The average training runtime for all Table2Logic
based models is 19 h. For the Logic2Text presented models, it averaged
10 h. Both Table2Logic and Logic2Text models have a very similar
amount of parameters (117M).

Appendix B. Model hyper-parameters

We keep Logic2Text’s hyper-parameters the same as Chen, Chen,
Zha et al. (2020). We refer the reader to the paper. Regarding the
Table2Logic model in 𝐓𝓵𝐓, which is based on Brunner and Stockinger
(2021)’s Valuenet, we changed the grammar and added additional
input data, as well as changing the code accordingly to our use case. We
use the same hyper-parameters as stated in the paper, with the excep-
tion of the base learning rate, beam size, number epochs, and gradient
clipping. This is the list of hyper-parameters used by Table2Logic for
the model 𝐓𝓵𝐓:

Random seed: 90 Attention vector size: 300

Maximum sequence
lengthy: 512

Grammar type embedding size: 128

Batch size: 8 Grammar node embedding size: 128
Epochs: 50 Column node embedding size: 300
Base learning rate: 5 ∗ 10−5 Index node embedding size: 300
Connection learning rate:
1 ∗ 10−4

Readout: ‘identity’

Transformer learning rate:
2 ∗ 10−5

Column attention: ‘affine’

Scheduler gamma: 0.5 Dropout rate: 0.3
ADAM maximum gradient
norm: 1.0

Largest index for I nodes: 20

Gradient clipping: 0.1 Include OOV token: True
Loss epoch threshold: 50 Beam size: 2048
Sketch loss weight: 1.0 Max decoding steps: 50
Word embedding size: 300 False Candidate Rejection: True
Size of LSTM hidden states:
300

Appendix C. Logical form grammar

See Fig. C.5

Appendix D. Logic2text errors

This section shows examples of error cases where the logic-to-
text stage of the pipeline failed to produce faithful sentences given a
gold LF. We include one example for each error type, including table,
caption, gold logical form and generated description. See Section 4.6.2
for more details.

D.1. Comparative arithmetic

See Table D.1.
Logical Form:

𝐓𝓵𝐓 sentence: austria was the only country to win 0 bronze medals
at the fil world luge championships.
Gold sentence: austria was the only country to have bronze medals in
the luge championship in 1961.

D.2. LF omission

See Table D.2.
Logical Form:

𝐓𝓵𝐓 sentence: there are 8 habitats that can be found in moldova.
Gold sentence: 8 land formations are classified with a habitat type of
forest steppe.
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Fig. C.5. The logical form Grammar after fixing the ambiguity issues in the original version (Chen, Chen, Zha et al., 2020). We follow the same notation as in IRNet and Valuenet.
The tokens to the left of the ∶∶= represent non-terminals (node types in the graph). Tokens in italics represent the possible rules for each node, with pipes (|) separating the rules.
The rules added to the original grammar in order to fix ambiguity issues are highlighted in green.

Table D.1
Table example titled "Fil world luge championships 1961.".

Rank Nation Gold Silver Bronze Total

1 austria 0 0 3 3
2 italy 1 1 0 2
3 west germany 0 2 0 2
4 poland 1 0 0 1
5 switzerland 1 0 0 1

D.3. Verbalization

See Table D.3.
Logical Form:

𝐓𝓵𝐓 sentence: foulisco elson played for the supersonics after pervis
ellison.
Gold sentence: francisco elson played 8 years later thanpervis ellison.

Appendix E. Examples of faithful 𝐓𝓵𝐓 sentences where LF is
different to gold

This section shows examples of automatic LFs from 𝐓𝓵𝐓 that
resulted in faithful sentences in the manual evaluation while being
different from their gold LF references. Each example extends the
information shown in Table 5.

E.1. Similar structure, semantically equivalent

Table E.1.

𝐓𝓵𝐓 Logical Form:

Gold Logical Form:

𝐓𝓵𝐓 sentence: in the list of appalachian regional commission counties,
schoharie has the highest unemployment rate.
Human sentence: the appalachian county that has the highest unem-
ployment rate is schoharie.

E.2. Similar structure, semantically different

Table E.2.
𝐓𝓵𝐓 Logical Form:
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Table D.2
Table example titled "Geography of moldova.".

Land formation Area, km square Of which
currently forests,
km square

% forests Habitat type

northern moldavian hills 4630 476 10.3% forest steppe
dniester - rāut ridge 2480 363 14.6% forest steppe
middle prut valley 2930 312 10.6% forest steppe
bălţ steppe 1920 51 2.7% steppe
ciuluc - soloneţ hills 1690 169 10.0% forest steppe
corneşti hills ( codru ) 4740 1300 27.5% forest
lower dniester hills 3040 371 12.2% forest steppe
lower prut valley 1810 144 8.0% forest steppe
tigheci hills 3550 533 15.0% forest steppe
bugeac plain 3210 195 6.1% steppe
part of podolian plateau 1920 175 9.1% forest steppe
part of eurasian steppe 1920 140 7.3% steppe

Table D.3
Table example titled "Seattle supersonics all - time roster.".

Player Nationality Jersey number ( s ) Position Years From

craig ehlo united states 3 sg 1996–1997 washington state
dale ellis united states 3 sg/sf 1986–1991 1997–1999 tennessee
pervis ellison united states 29 c 2000 louisville
francisco elson netherlands 16 c 2008 california
reggie evans united states 34 , 30 pf 2002–2006 iowa
patrick ewing united states 33 center 2000–2001 georgetown

Table E.1
Table example titled "List of appalachian regional commission counties.".

County Population Unemployment rate Market income
per capita

Poverty rate Status

allegany 49927 5.8% 16850 15.5% - risk
broome 200536 5.0% 24199 12.8% transitional
cattaraugus 83955 5.5% 21285 13.7% transitional
chautauqua 136409 4.9% 19622 13.8% transitional
chemung 91070 5.1% 22513 13.0% transitional
chenango 51401 5.5% 20896 14.4% transitional
cortland 48599 5.7% 21134 15.5% transitional
delaware 48055 4.9% 21160 12.9% transitional
otsego 61676 4.9% 21819 14.9% transitional
schoharie 31582 6.0% 23145 11.4% transitional
schuyler 19224 5.4% 21042 11.8% transitional
steuben 98726 5.6% 28065 13.2% transitional
tioga 51784 4.8% 24885 8.4% transitional

Gold Logical Form:

𝐓𝓵𝐓 sentence: dick rathmann had a lower rank in 1956 than he did
in 1959.

Human sentence: dick rathmann completed more laps in the indi-
anapolis 500 in 1956 than in 1959.

Table E.2
Table example titled "Dick rathmann.".

Year Qual Rank Finish Laps

1950 130.928 17 32 25
1956 144.471 6 5 200
1957 140.780 withdrew withdrew withdrew
1958 145.974 1 27 0
1959 144.248 5 20 150
1960 145.543 6 31 42
1961 146.033 8 13 164
1962 147.161 13 24 51
1963 149.130 14 10 200
1964 151.860 17 7 197

E.3. Different structure, semantically different

Table E.3.
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Table E.3
Table example titled "2005 houston astros season.".

Date Winning team Score Winning pitcher Losing pitcher Attendance Location

may 20 texas 7 - 3 kenny rogers brandon backe 38109 arlington
may 21 texas 18 - 3 chris young ezequiel astacio 35781 arlington
may 22 texas 2 - 0 chan ho park roy oswalt 40583 arlington
june 24 houston 5 - 2 roy oswalt ricardo rodriguez 36199 houston
june 25 texas 6 - 5 chris young brandon backe 41868 houston

Table E.4
Table example titled "2006 asp world tour.".

Location Country Event Winner Runner - up

gold coast australia roxy pro gold coast melanie redman - carr ( aus ) layne beachley ( aus )
tavarua fiji roxy pro fiji melanie redman - carr ( aus ) layne beachley ( aus )
teahupoo , tahiti french polynesia billabong pro tahiti women melanie redman - carr ( aus ) chelsea georgeson ( aus )
itacarã brazil billabong girls pro layne beachley ( aus ) jessi miley - dyer ( aus )
hossegor france rip curl pro mademoiselle chelsea georgeson ( aus ) melanie redman - carr ( aus )
manly beach australia havaianas beachley classic stephanie gilmore ( aus ) layne beachley ( aus )
sunset beach , hawaii united states roxy pro melanie bartels ( haw ) stephanie gilmore ( aus )
honolua bay , hawaii united states billabong pro jessi miley - dyer ( aus ) keala kennelly ( haw )

𝐓𝓵𝐓 Logical Form:

Gold Logical Form:

𝐓𝓵𝐓 sentence: most of the games of the 2005 houston astros’ season
were played in the location of arlington.
Human sentence: arlington was the first location used in the 2005
houston astros season.

E.4. Simpler, more informative semantic

Table E.4.
𝐓𝓵𝐓 Logical Form:

Gold Logical Form:

𝐓𝓵𝐓 sentence: aus won 7 events in the 2006 asp world tour.
Human sentence: seven of the individuals that were the runner up
were from aus.

Appendix F. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2023.121869.
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Abstract

Table-to-text generation involves generating ap-
propriate textual descriptions given structured
tabular data. It has attracted increasing atten-
tion in recent years thanks to the popularity of
neural network models and the availability of
large-scale datasets. A common feature across
existing methods is their treatment of the in-
put as a string, i.e., by employing linearization
techniques that do not always preserve infor-
mation in the table, are verbose, and lack space
efficiency. We propose to rethink data-to-text
generation as a visual recognition task, remov-
ing the need for rendering the input in a string
format. We present PixT3, a multimodal table-
to-text model that overcomes the challenges
of linearization and input size limitations en-
countered by existing models. PixT3 is trained
with a new self-supervised learning objective
to reinforce table structure awareness and is
applicable to open-ended and controlled gen-
eration settings. Experiments on the ToTTo
(Parikh et al., 2020a) and Logic2Text (Chen
et al., 2020c) benchmarks show that PixT3 is
competitive and, in some settings, superior to
generators that operate solely on text.1

1 Introduction

Generating text from structured inputs such as ta-
bles, tuples, or graphs, is commonly referred to
as data-to-text generation (Reiter and Dale, 1997;
Covington, 2001; Gatt and Krahmer, 2018). This
umbrella term includes several tasks ranging from
generating sport summaries based on boxscore
statistics (Wiseman et al., 2017), to producing fun
facts from superlative Wikipedia tables (Korn et al.,
2019), and creating textual descriptions given bio-
graphical data (Lebret et al., 2016). From a model-
ing perspective, data-to-text generation is challeng-
ing as it is not immediately obvious how to best
describe the given input. For instance, the table in

1Our code, models, and data are available at https://
github.com/alonsoapp/PixT3.

Figure 1 can be verbalized in different ways, de-
pending on the specific content we choose to focus
on. In controlled data-to-text generation (Parikh
et al., 2020a), models are expected to generate de-
scriptions for pre-selected parts of the input (see
the highlighted cells in Figure 1).

Regardless of the generation setting, numerous
approaches have emerged in recent years with dif-
ferent characteristics. A few exploit the structural
information of the input (Puduppully et al., 2019;
Chen et al., 2020b; Wang et al., 2022), use neural
templates (Wiseman et al., 2018), or resort to con-
tent planning (Su et al., 2021; Puduppully et al.,
2022). While others (Chen et al., 2020a,c; Agha-
janyan et al., 2022; Kasner and Dusek, 2022) im-
prove on fluency and generalization by leveraging
large-scale pre-trained language models (Devlin
et al., 2019; Raffel et al., 2020). A common feature
across these methods is their treatment of tabular
input as a string, following various linearization
methods. As an example, Figure 1 shows the rep-
resentation of tabular data (top) as a sequence of
(Column, Row, Value) tuples (bottom).

Problematically, representing tabular informa-
tion as a linear sequence results in a verbose repre-
sentation that often exceeds the context window
limit of popular Transformer models (Vaswani
et al., 2017). The challenge of processing such
long sequences has fostered the development of
even more controlled methods which refrain from
encoding the table as a whole, concentrating exclu-
sively on highlighted content (e.g., only the yellow
cells in Figure 1). Unfortunately, models trained
on abridged input have difficulty generalizing to
new domains while being practically ineffective in
scenarios where content selection is not provided.

In this paper we propose to rethink data-to-text
generation as a visual recognition task, allowing
us to represent and preserve tabular information
compactly. Vision Transformers (ViTs; Doso-
vitskiy et al. 2021) have significantly advanced
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Table Title: Shuttle America
Section Title: Fleet

Aircraft Total Orders Passengers Operated for Notes
F Y+ Y

Embraer E170 5 - 6 16 48 70 United Express transferred to Republic Airline
14 - 9 12 69 Delta Connection Delta Shuttle 2 planes on wet lease 

from Republic AirlineEmbraer E175 15 - 12 12 52 76
Total 35 -

Linearized Table: <page_title> Shuttle America <page_title> <section_title> Fleet <section_title> <table> <row>
<cell> Aircraft <cell> <cell> Total <row_header> Aircraft <row_header> <cell> <cell> Orders <row_header> Aircraft
<row_header> <row_header> Total <row_header> <cell> <cell> Passengers <row_header> Aircraft <row_header>
<row_header> Total <row_header> <row_header> Orders <row_header> <cell> <cell> Operated For <row_header>
Aircraft <row_header> <row_header> Total <row_header> <row_header> Orders <row_header> <row_header>
Passengers <row_header> <cell> <cell> Notes <row_header> Aircraft <row_header> . . . . . .

Target Description: Shuttle America operated the E-170 and the larger E-175 aircraft for Delta Air Lines.

Figure 1: Example of table-to-text generation taken from the ToTTo dataset (Parikh et al., 2020a). In the controlled
setting, a natural language description is generated only for highlighted (yellow) cells. The table is linearized by
encoding each value as a (Column, Row, Value) tuple. We only show the first row, for the sake of brevity.

the field of visual language understanding (Kim
et al., 2022; Davis et al., 2022) demonstrating pro-
ficiency in various tasks, including language mod-
eling (Rust et al., 2023), visual document under-
standing (Huang et al., 2022), and visual ques-
tion answering (Masry et al., 2022). Our work
builds on Pix2Struct (Lee et al., 2023), a pretrained
image-to-text model which can be fine-tuned for
visually-situated language tasks. We recast data-
to-text generation as an image-to-text problem and
present PixT3, a Pixel-based Table-to-Text model,
which is generally applicable to open-ended and
controlled generation settings, overcoming the chal-
lenges of linearization and input size limitations
encountered by existing models.

Our contributions can be summarized as follows:
(a) we introduce the first pixel-based model for
table-to-text generation and showcase its robust-
ness across generation settings with varying table
sizes; (b) we propose a new training curriculum
and self-supervised learning objective to reinforce
table structure awareness; (c) automatic and human
evaluation results on the ToTTo benchmark (Parikh
et al., 2020b) show that PixT3 excels in open-ended
generation, leading to improved faithfulness and
generation quality, while being competitive with ex-
isting methods in controlled scenarios; and (d) we
present a new dataset based on Logic2Text (Chen
et al., 2020c), which allows us to evaluate general-
ization capabilities of current table-to-text models.

2 Related Work

The bulk of previous work treats tables as textual
objects. Several techniques have been developed

to extract accurate information from them (Pudup-
pully et al., 2019; Chen et al., 2020b) using tem-
plates (Wiseman et al., 2018), enforcing table struc-
ture awareness (Mahapatra and Garain, 2021; Wang
et al., 2022), applying contrastive learning (An
et al., 2022; Chen et al., 2023b) or focusing on con-
tent planning (Su et al., 2021; Puduppully et al.,
2022). Other techniques (Chen et al., 2020a,c;
Aghajanyan et al., 2022; Kasner and Dusek, 2022)
improve fluency and generalization by leveraging
large-scale pretrained language models (Devlin
et al., 2019; Raffel et al., 2020). Tables are gen-
erally linearized, even when special-purpose tech-
niques are developed for encoding table structure
(Wang et al., 2022). Dedicated table understand-
ing techniques (Wang et al., 2021; Jin et al., 2023)
eschew linearization but have not been integrated
with generation tasks.

Previous attempts to address table-to-text gener-
ation from a visual recognition perspective (Dash
et al., 2023; Srihari et al., 2003) have relied on
OCR methods which first extract text from the im-
age and then feed it as a string to a generation
model. Aside from being noisy, these techniques
typically embrace a text-centric point of view, treat-
ing the image as a limitation rather than an infor-
mative modality. Our work builds on recent visual
language understanding models (Kim et al., 2022;
Davis et al., 2022; Lee et al., 2023) which are based
exclusively on pixels and have managed to outper-
form OCR methods in several natural language
processing tasks (Rust et al., 2023; Huang et al.,
2022; Masry et al., 2022; Salesky et al., 2023).

The field of Vision Language Models (VLMs)
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has also experienced significant growth in recent
years (Liu et al., 2023; Ye et al., 2023b; Bai et al.,
2023; Wang et al., 2023; Alayrac et al., 2022).
While most of them focus primarily on natural im-
ages, a few are starting to explore the application of
dual encoder architectures to visually represented
language (Ye et al., 2023a; Zhang et al., 2023).
However, these architectures are not parameter lean
(with increased model size of a factor of 40 or more
compared to Pix2Struct), and some continue to rely
on fixed resolution images which can be particu-
larly problematic when processing tabular data.

A few other efforts have recently explored multi-
modal approaches to processing tables for various
tasks, including table-to-text generation. Dash et al.
(2023) convert images into HTML tokens which
are subsequently linearized and processed by a tra-
ditional text-to-text model. Other work (Chen et al.,
2023a) focuses on recognizing the structure of ta-
bles from images as an independent task. It also
leverages multimodal pretraining and unsupervised
table structure learning objectives, but ignores the
content of table cells and their relations. To the best
of our knowledge, our work is the first to conceptu-
alize data-to-text generation as a visually-situated
language understanding problem.

3 Problem Formulation

The task of table-to-text generation aims to take
a structured table t as input and output a natural
language description y = [y1, . . . , yk] where k
is the length of the description. Table t is
typically reformatted as a sequence of textual
records t = [t1,1, t1,2, . . . , ti,j , . . . , tm,n] where m
and n respectively denote the number of rows and
columns of t.

We approach this task from a visual recognition
perspective, and expect the input table to be an
image x. The image is reshaped into a sequence
of patches analogous to linguistic tokens. More
formally, for an input image x ∈ RH×W×C and
patch size p, we create N image patches denoted
as xp ∈ RN×(P 2·C). (H,W ) is the resolution of
the original image, C is the number of channels,
(P, P ) is the resolution of each image patch, and
N = HW

P 2 the resulting number of patches, which
serves effectively as the input sequence length. Our
proposed model learns to autoregressively estimate
the conditional probability of a text sequence from
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ViT encoder

Transformer decoderPixT3

In 2015, Jane Doe starred in the American 
Odyssey as Maya Decker.
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Figure 2: Overview of PixT3 generation model.

a source image as:

P (y|x;θ) =
n∏

i=1

P (yi|y<i,x;θ) (1)

where θ are transformer parameters and y<i the
words decoded thus far.

We further define three generation settings,
which manipulate the information provided to
the model in terms of content selection (see
Appendix B for visualization). In the tightly-
controlled setting (TControl), the model is given
highlighted cells only, ignoring the table. Most
recent approaches benchmark model performance
in this setting (Wang et al., 2022; An et al., 2022;
Chen et al., 2023b; Su et al., 2021; Kale and Ras-
togi, 2020). In the loosely controlled setting (LCon-
trol), the model is given highlighted cells and the
entire table. This is the original setting for which
the ToTTo dataset (Parikh et al., 2020a) was con-
structed. Finally, we introduce the open-ended set-
ting (OpenE), where the model is given the table
without any highlighting.

4 The PixT3 Model

PixT3 is an image-encoder-text-decoder model
based on Pix2Struct (Lee et al., 2023). It expects
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image rendered tables and generates descriptions
thereof (see Figure 2). Pix2Struct is a Vision Trans-
former model pretrained on 80M screenshots of
web pages extracted from URLs in the C4 corpus
(Raffel et al., 2020). It splits input images into
patches of 16×16 pixels (see Figure 2), linearly
embeds each patch, adds position embeddings, and
feeds the resulting sequence of vectors to a standard
Transformer encoder (Vaswani et al., 2017).

Pix2Struct was first warmed up with a reading
curriculum (Rust et al., 2023; Davis et al., 2022),
to improve training stability and fine-tuning per-
formance and then pretrained with a screenshot
parsing objective; specifically, it generates a sim-
plified version of an HTML subtree that represents
a highlighted area of a web page screenshot. It
also adds a BART-like (Lewis et al., 2020) learning
signal to pretraining by masking 50% of the text in
the input and then requiring the model to produce
the entire subtree. Importantly for our table-to-text
generation task, Pix2Struct supports variable im-
age resolution and multiple aspect ratios. It first
re-scales the input (up or down) to extract the max-
imal number of fixed-size patches that fit within a
given sequence length and then replaces the typi-
cal 1-dimensional absolute positional embedding
with a 2-dimensional one, which adds resolution
flexibility and removes any aspect ratio distortion.

We initialize PixT3’s model weights with
Pix2Struct; we next adopt a curriculum training
strategy which instills in our model knowledge
about tables and their structure (see Section 4.2);
and finally, we fine-tune on table-to-text generation
datasets such as ToTTo (Parikh et al., 2020a) with
a task-specific supervised objective.

4.1 Table-to-Image Rendering
We parse tables to HTML, and subsequently render
them into images. We also render table metadata
(e.g., Wikipedia page and section title), if it exists,
as part of the image, adding it on top of the ta-
ble. Tables are rendered into three different images
corresponding to the generation settings defined in
Section 3 (see Appendix B, Figure 6).

Although Pix2Struct can handle variable resolu-
tions and input patches, very long inputs are nev-
ertheless computationally expensive. Following
Lee et al. (2023), we set the maximum input length
to 2,048 patches (of 16×16 pixels) which corre-
sponds to a maximum image size of 524,288 pixels.
41.74% of the tables in a dataset like ToTTo (Parikh
et al., 2020a) exceed this size (see Figure 5 in Ap-

pendix A), with 5% being larger than 8.3M pixels
(32,768 patches). Indiscriminately down-scaling
all images exceeding the maximum input length
would negatively affect performance, especially for
very big tables, effectively rendering them unread-
able (we showcase how image size affects model
performance in Figure 4). To avoid this as much
as possible, we truncate the image to fit within a
maximum down-scaling factor γ. In other words,
images are first compressed to γ% of their original
size and then truncated from left to right until they
fit into 2,048 patches. The optimal value for γ is
determined empirically (see Appendix C).

4.2 Structure Learning Curriculum

Pix2Struct is a general-purpose visual language un-
derstanding model, and as such it is not particularly
knowledgeable about tables and their structure. Ta-
bles can be presented in a variety of ways visually,
such as spanning multiple columns or rows, with or
without horizontal and vertical lines, non-standard
spacing and alignment, and text formatting. Aside
from presentation, there are various conventions
about the underlying semantics of tables and their
structure, e.g., each cell is only related to cells in
the same column and row. These challenges have
led to the development of dedicated table under-
standing techniques (Jin et al., 2023; Wang et al.,
2022) in the domain of text but cannot be readily
ported to images.

Instead, we encourage PixT3 to adhere to tabular
conventions, by first training it on an intermediate
supporting task. This acts as a structure learning
curriculum, exposing the model to the rules govern-
ing tables. We next elaborate on the intermediate
task, its corresponding dataset, and the proposed
self-supervised objective.

Dataset for Intermediate Training Existing
datasets like ICDAR2021 (Kayal et al., 2021) and
TableBank (Li et al., 2019) are representative of the
task of parsing table images into their structure and,
in theory, could be used for our intermediate train-
ing purposes. However, they focus on scientific
tables which do not follow the typical distribution
of Wikipedia tables found in ToTTo (Parikh et al.,
2020a), e.g., in terms of size and cells spanning
across rows and columns. We instead propose to
create a synthetic image-to-text dataset, making
use of the table rendering pipeline described in Sec-
tion 4.1. Although we generate tables specifically
tailored for our use-case, the generation process is
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Figure 3: Synthetically generated table with a high-
lighted cell and corresponding pseudo-HTML target
sequence (for self-supervised objective). Cells within
the target sequence are highlighted in the table with a
colored background. For details on the structure of the
target, please refer to Appendix D.

flexible and can be adapted to other domains with
different characteristics.

We determine the structure of each table (size,
column, and row spans) randomly, following
ToTTo’s training set distribution. We cap the gener-
ation process at a maximum of 20 columns and 75
rows. Table cells are filled with synthetic val-
ues consisting of a random combination of one to
five random English alphabet characters and digits,
functioning as identifiers rather than meaningful
values (see Figure 3 for an example). Our dataset
contains 135,400 synthetic tables, 120,000 for train-
ing, 7,700 for validation, and 7,700 for testing.

Self-supervised Objective While masking is a
widely adopted learning objective (Devlin et al.,
2019), it does not naturally transfer to our table-to-
text generation task; table values are not naturally
correlated to neighboring values and thus a masked
cell cannot be easily predicted from other cells
in its context. Table values could be rearranged
so that they correlate to their neighbors, however,
early experiments showed that this type of objective
does not improve downstream task performance
(see Appendix D for details). Another common
pretraining objective is table linearization (Chen
et al., 2023a), which, however, scales poorly with
table size, leading to slow pretraining.

We propose a self-supervised objective that en-
courages PixT3 to capture the relations between
cells within a table while generating a small amount
of tokens. Specifically, we highlight a random cell
in a synthetically generated table, and train the
model to produce a sorted list of cells within the

same column and row (see Figure 3). Our objec-
tive encapsulates a loose notion of table structure,
nudging the model to pay attention to the arrange-
ment of columns and rows around a cell. We fol-
low the same pseudo HTML notation introduced in
Pix2Struct to format our output sequence, easing
the model’s transition from its original screenshot
parsing objective to this new one. Note that we con-
sider tables with a heterogeneous structure where
cells can span across multiple columns and rows.
In such cases, the expected sequence will contain
all cells in related rows and columns surrounding
the highlighted cell (see Figure 3).

4.3 PixT3 Fine-tuning

The intermediately pre-trained PixT3 is subse-
quently fine-tuned on an image-rendered dataset
(see Section 4.1). In experiments, we use ToTTo
(Parikh et al., 2020b), however, our approach is
not tied to a particular style of tables. Due to our
model’s requirement for unimodal input, we treat
table-related information (such as its title) as part of
the table itself and render them both as one image
(see Lee et al. 2023 for a similar approach).

5 Experimental Setup

Model Configuration All our experiments were
conducted with the base pretrained Pix2Struct2

model (282M parameters). We trained PixT3 vari-
ants for the three table-to-text generation settings
defined in Section 3. All PixT3 models were fine-
tuned on ToTTo (Parikh et al., 2020a) with tables
rendered as images following the procedure out-
lined in Section 4.1. The maximum down-scaling
factor γ was set to 0.39.

PixT3 models were fine-tuned with a batch size
of 8 and a gradient accumulation of 32 steps on
a single NVIDIA A100 80GB GPU. Checkpoints
were selected according to best performance on
the validation set. All models used an input se-
quence length of 2,048 patches and were optimized
with AdamW (Loshchilov and Hutter, 2017). We
used a learning rate scheduler with a linear warmup
of 1,000 steps to 0.0001, followed by cosine de-
cay to 0. The decoder maximum sequence length
was set to 50 tokens, which covers 97.49% of the
target descriptions in the training data. PixT3 was
trained for 1.4k steps with the self-supervised ob-
jective described in Section 4.2. Our decoder was
not frozen during intermediate training, as initial

2https://github.com/google-research/pix2struct
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experiments showed that a fully trained model out-
performed one with frozen decoder weights. A full
list of fine-tuning hyper-parameters can be found
in Appendix H.

Datasets We evaluated our model on ToTTo
(Parikh et al., 2020a), a large-scale, manually cu-
rated dataset representative of several domains and
types of tables. We also assessed the generalization
capabilities of PixT3 on out-of-distribution tables.
We created an out-of-domain benchmark with con-
tent selection annotations similar to ToTTo based
on Logic2Text (Chen et al., 2020c), an existing
dataset which contains a total of 10,161 Wikipedia
tables, paired with human-authored descriptions
and logical forms. Logic2Text differs from ToTTo
in that descriptions are not simple verbalisations
of table rows and columns, but require some form
of reasoning (e.g., comparisons or counting op-
erations). We were able to automatically trace
values mentioned in the logical form back to the
cells of the input tables (Alonso and Agirre, 2023),
thus obtaining highlighted cell annotations similar
ToTTo’s (see Appendix E for an example). We re-
port results on the official test set (1,085 examples).

Model Comparison We evaluated PixT3 against
several text-only models with similar parameter
sizes. These include CoNT (An et al., 2022), the
top performant (published) model in the ToTTo
leaderboard.3 CoNT is a text-to-text generation
model which makes use of contrastive learning,
through improved selection of contrastive exam-
ples, a new contrastive loss, and a global decoding
strategy. CoNT expects the input table to be con-
verted to a string, and is built on top of T5-base
(220M parameters). We also compared against
Lattice (Wang et al., 2022), a model which en-
forces awareness of table layout though pruning
the attention flow and encoding cells in a way
that is invariant to their relative position in a se-
quence. This model also uses T5-base and expects
linearized input. In addition, we report results with
vanilla T5-base which performed competitively on
the ToTTo leaderboard without any task specific
modifications (Kale and Rastogi, 2020; An et al.,
2022). All comparison models and PixT3, were
trained on the ToTTo training set in our three gen-

3A model named SKY appears to slightly outperform
CoNT in the leaderboard, however, at the time of writing,
we were not able to verify this, i.e., by finding a publication
or preprint describing this model.

Dev TestN TestO Test

Model BL PR BL PR BL PR BL PR

T5-base 47.7 57.1 38.9 51.2 55.4 61.1 47.2 56.2
T5-3B 48.4 57.8 39.3 51.6 55.1 60.7 47.2 56.2
Lattice 48.0 58.4 40.0 53.8 55.9 62.4 48.0 58.1
CoNT 49.0 58.6 40.6 53.7 56.7 62.5 48.7 58.1T

C
on

tr
ol

PixT3 45.7 55.7 37.5 50.6 53.2 60.4 45.4 55.5

T5-base 24.5 27.2 19.4 23.9 29.4 30.3 24.5 27.1
T5-3B 23.6 26.0 18.0 22.4 28.7 29.2 23.4 25.8
Lattice 24.9 31.0 20.8 27.7 27.5 33.8 24.4 30.8
CoNT 23.8 29.3 19.2 26.1 28.7 32.3 23.9 29.2L

C
on

tr
ol

PixT3 46.2 55.1 38.1 50.3 52.7 59.0 45.4 54.7

T5-base 21.5 23.5 16.8 21.0 26.5 26.5 21.7 23.8
T5-3B 20.8 22.9 16.7 20.3 25.5 25.5 21.2 22.9
Lattice 20.9 26.1 17.6 24.3 23.7 27.6 20.8 25.9
CoNT 21.7 25.8 16.9 23.2 26.3 28.3 21.6 25.8O

pe
nE

PixT3 24.8 28.3 20.5 26.3 28.9 30.3 24.7 28.3

Table 1: Automatic evaluation results on ToTTo in
three generation settings: tightly controlled (TControl),
loosely controlled (LControl), and open-ended (OpenE).
We report BLEU (BL) and PARENT (PR) results on the
development (Dev) and Test sets, including the overlap-
ping (TestO) and non-overlapping (TestN) test set splits.
BLEURT results are in Appendix E.

eration settings.4

For our out-of-domain experiments, we also
compare against LLaVA-1.5 (Liu et al., 2023), a
large pretrained multimodal model (13B parame-
ters) which is built on top of the CLIP visual en-
coder (Radford et al., 2021) and the Vicuna-7B lan-
guage model (Zheng et al., 2023), and fine-tuned
on vision-language instructions. LLaVA has not
been fine-tuned specifically for table-to-text gener-
ation, however, it is interesting to see if sufficiently
large scale is all it takes to do well on the table-
to-text generation task. LLaVA can only handle
a single image at each forward pass. This limita-
tion prevents it from performing inference in an
in-context learning setting, where the model has
access to multiple input-output examples at the
same time. To approximate in-context learning as
closely as possible, we provided LLaVA with an
image, an instruction, and three table descriptions
as output examples for each generation setting (see
Appendix F for details). We summarize the number
of parameters for all comparison models in Table 2.

we do still provide a few description examples in
our prompt to ensure a fair zero-shot comparison.
All prompts used for LLaVA in this evaluation can
be found in Appendix F.

4Comparison models were trained with the authors’ pub-
licly available scripts.
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6 Results

PixT3 is the best performing model in loosely
controlled and open-ended generation settings.
Table 1 summarizes our results on ToTTo in our
three generation settings. We evaluated model per-
formance automatically with the same metrics used
to rank participant systems in the ToTTo leader-
board. These include BLEU (Papineni et al., 2002)
which is as a proxy for fluency, PARENT (Dhin-
gra et al., 2019), a metric proposed specifically
for data-to-text evaluation that takes the table into
account, serving as a proxy of faithfulness, and
BLEURT (Sellam et al., 2020); the latter is a com-
posite metric that takes a reference and model out-
put as input, and returns a score that indicates the
extent to which the output is fluent and conveys the
meaning of the reference. Note that ToTTo features
two splits in the development/test set containing
tables whose header values are present (overlap-
ping split) and absent (non-overlapping split) in the
training set. Results on the test set, which is not
publicly available, were obtained via submitting to
the ToTTo leaderboard.

We first discuss our results on the tightly con-
trolled generation setting (TControl) where models
are not given the full table, just the highlighted
cells. We would not expect PixT3 to excel at this
setting, which is better suited to text-to-text mod-
els (highlighted cells make for non-descriptive im-
ages, see Appendix B, Figure 6). PixT3 is indeed
unable to outperform CoNT, Lattice, and related
T5 variants, falling 3.5 BLEU points behind on
the development set and 3.7 on the test set. How-
ever, LControl, the loosely controlled generation
setting, better showcases the advantages of PixT3,
which in this case demonstrates almost a two times
improvement over CoNT and T5 models. Perfor-
mance degrades drastically for all systems in the
open-ended setting (OpenE) which is challenging;
models are expected to perform content selection
in addition to text generation, and could produce ta-
ble descriptions which are valid but different from
the reference. Automatic metrics based on n-gram
overlap are particularly punitive in this case. Nev-
ertheless, PixT3 is superior to CoNT, Lattice, and
T5 across evaluation metrics.

PixT3 generalizes to out-of-domain tables which
require reasoning skills. We next evaluate
whether PixT3 generalizes to unseen tables, outside
ToTTo’s distribution. Table 2 shows our results on
Logic2Text (Chen et al., 2020c), again following

Model Size BLEU PARENT

LLaVA 13B 12.6 34.36
T5-base 220M 16.8 55.97
T5-3B 3B 17.7 52.75
Lattice 220M 19.8 61.05
CoNT 220M 18.8 61.73T

C
on

tr
ol

PixT3 282M 20.6 61.86

LLaVA 13B 5.9 23.18
T5-base 220M 11.5 40.02
T5-3B 3B 10.9 35.45
Lattice 220M 11.5 40.02
CoNT 220M 11.8 43.25L

C
on

tr
ol

PixT3 282M 21.5 56.45

LLaVA 13B 6.7 20.14
T5-base 220M 7.9 30.67
T5-3B 3B 9.5 29.47
Lattice 220M 11.7 38.12
CoNT 220M 11.0 36.94O

pe
nE

PixT3 282M 11.4 35.68

Table 2: Automatic evaluation results on Logic2Text
in three generation settings: tightly controlled (LCon-
trol), loosely controlled (LControl), and open-ended
(OpenE). All models (except LLAVA) were fine-tuned
on ToTTo and tested on Logic2Text. BLEURT results
are in Appendix E.

the three generation settings. Compared to ToTTo,
Logic2Text is a more challenging dataset as most
descriptions rely on reasoning over the entire ta-
ble. This results in poor model performance in the
TControl setting which does not include the table as
input. Nonetheless, we observe that PixT3 excels
at the LControl setting, even though it has to pro-
cess and reason over the entire table. The OpenE
setting is challenging for all models as they are
asked to identify interesting cells to talk about in
out-of-domain tables. PixT3 still maintains an edge
over T5 and LLaVA, performing on par with CoNT
and Lattice. We observe that LLaVA cannot match
the performance of PixT3 and T5-based models.
This underscores the importance of task-specific
fine-tuning over parameter size. We present output
examples in Appendix E.

PixT3 is robust against table input size. In Fig-
ure 4, we analyze the effect of table size on model
performance. As can be seen, T5, Lattice, and
CoNT are severely affected: the bigger the table,
the less accurate the generated description. PixT3
is evidently more robust, showing degradation in
performance only for very big tables. We also ex-
amined whether PixT3 has an edge because of its
ability to encode longer inputs. Recall that CoNT,
Lattice, and T5-base utilize a fixed input length

6727



Figure 4: Model performance (CoNT, T5, PixT3, Lat-
tice, and PixT3 with 512 patch input size) in the LCon-
trol setting across 18 table size groups (logarithmic
scale). Upper and lower bounds in shaded areas corre-
spond to results for the overlapping and non-overlapping
ToTTo splits, while central points correspond to results
overall. We report results with PARENT, other metrics
show similar tendencies. We refer to Appendix A for
further details.

of 512 tokens, while PixT3 uses 2,048 patches. We
thus trained a PixT3 variant with input length set
to 512 patches. As shown in Figure 4, the more con-
strained PixT3 model is slightly worse and more
likely to degrade with increased table size but con-
sistently outperforms CoNT, Lattice, and T5.

The structure learning curriculum improves
generation quality across metrics. In Table 3
we perform an ablation study comparing PixT3
with and without our structure learning curriculum
and self-supervised objective (Section 4.2). For
both models we follow the same fine-tuning pro-
cess: we render tables into images, identify the opti-
mal point of image compression and truncation (see
Section 4.1), and perform hyper-parameter search
to optimize Pix2Struct-base for our task. Vanilla
PixT3 (second row in Table 3) shows a substantial
improvement over an out-of-the-box Pix2Struct
model which achieves a BLEU score of 0.2 and
PARENT score of 0.6 on the ToTTo development
set. Adding the intermediate training curriculum
(second row in Table 3) slightly improves vanilla
PixT3 across evaluation metrics.

Manual inspection of the descriptions produced
by the two PixT3 model variants reveals they are
often semantically equivalent to the target (43% of
the time). Nevertheless, the intermediate training
curriculum substantially reduces structure-based
faithfulness errors, especially in the OpenE setting.
On a sample of 200 outputs (randomly selected

Dev Test

Models BL PR BRT BL PR BRT

Pix2Struct 0.2 0.6 −1.433 — — —
PixT3 (W/o SLC) 38.7 46.0 −0.003 38.3 45.6 0.001
PixT3 (With SLC) 39.2 46.5 0.008 38.7 46.3 0.007

Table 3: PixT3 with and without structure learning
curriculum (SLC); we report results on the ToTTo devel-
opment (Dev) and Test set with BLEU (BL), PARENT
(PR), and BLEURT (BRT), averaged across the three
generation settings.

from the development set), we found that 23% of
the descriptions produced by vanilla PixT3 disre-
gard or misinterpret the structure of the table. Struc-
tural faithfulness errors reduce to 7% when PixT3
is trained with our structure learning curriculum.

PixT3 is most faithful in loosely controlled and
open-ended generation settings. We further con-
ducted a human evaluation study to quantify the
extent to which the generated descriptions are faith-
ful to the table. We evaluated PixT3, and the two
best performing text-only systems (CoNT, and Lat-
tice) on two sets of 100 randomly selected table-
description pairs from ToTTo (development set)
and Logic2Text (test set), in the three generation
settings. Crowdworkers were presented with an un-
compressed image of a table, its page and section ti-
tle, and a model generated description. As an upper
bound, we also elicited judgments for the human
curated reference descriptions for the same ToTTo
and Logic2Text examples. Participants were asked
to determine whether a description was "True" or
"False" based on the information provided in the
table and/or its title and subtitle (see instructions in
Appendix G). Overall we elicited 7,200 judgments
(100 examples × 3 generation settings × 4 model
descriptions × 3 participants × 2 datasets). Crowd-
workers were recruited using the online platform
Prolific.5

Table 4 shows the results of the human evalu-
ation, specifically the proportion of descriptions
deemed faithful. As expected, the human authored
Reference description is consistently faithful across
generation settings. CoNT is more faithful in TCon-
trol but deteriorates in the LControl and OpenE
settings. We further examined whether differences
among systems are statistically significant using
paired bootstrap resampling. PixT3 is significantly
worse (p < 0.05) than the Reference in TControl

5https://www.prolific.com
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Model TControl LControl OpenE

Reference 87 84 89
Lattice 79 16 20
CoNT 76 16 35To

T
To

PixT3 69 72 78

Reference 81 87 86
Lattice 34 3 16
CoNT 35 3 26L

2T

PixT3 32 40 60

Table 4: Human evaluation results on ToTTo and
Logic2Text (L2T). Proportion of descriptions rated as
faithful for PixT3, CoNT, and Reference in three gen-
eration settings: tightly controlled (LControl), loosely
controlled (LControl), and open-ended (OpenE).

but not CoNT or Lattice. In LControl all differ-
ences between systems are statistically significant
(p < 0.05). In OpenE, PixT3 is significantly differ-
ent (p < 0.05) from CoNT and Lattice but not from
the Reference. Inter-rater agreement was moder-
ate with a Fleiss’ Kappa coefficient of 0.55 (Fleiss,
1971).

7 Conclusion

In this paper, we leverage the capabilities of Vi-
sion Transformers to recast table-to-text generation
as a visual recognition task, removing the need
for rendering the input in a string format. Our
model, PixT3, introduces a new training curricu-
lum and self-supervised learning objective in order
to capture the structure and semantics of tables.
Experiments across constrained and open-ended
generation settings show it is robust to different
table sizes, performing competitively and often bet-
ter than state-of-the-art models. PixT3 is also able
to handle new domains with unseen tables, as evi-
denced by our results on Logic2Text, a new dataset
which we propose for assessing the generalization
capabilities of table-to-text generation models.

Avenues for future research are many and var-
ied. There are several downstream tasks which
stand to benefit from a pixel-based view of textual
information, including multilingual table-to-text
generation, and semantic parsing. We would also
like to investigate additional objectives and induc-
tive biases that can better capture the structure of
tables and inter-cell dependencies.

8 Limitations

While PixT3 shows promising results, its perfor-
mance is affected by the dimension of the input
tables (for instance, 16% of the Wikipedia tables

in ToTTo remain too big for PixT3 to represent
effectively). It would be interesting to look into
alternative ways of preprocessing very large tables,
e.g., by rendering them via multiple images. While
our proposed intermediate training methodology
mitigates faithfulness errors, the model still strug-
gles with hallucinations, falling short of human-
level performance.

Finally, PixT3, as well as other comparison sys-
tems, have limited reasoning capabilities, e.g., they
cannot infer information which is not explicitly
stated in the table or make logical connections be-
tween concepts. PixT3’s superior performance in
terms of faithfulness on Logic2Text (see Table 4)
is due to generating simpler sentences rather than
superior reasoning skills. Thus, aside from new
training objectives, a promising direction would be
to combine the visual representations with an inter-
mediate planning component that encourages the
model to reason about the input while generating
the output.
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Figure 5: Proportion of ToTTo examples (development
set) per table size (shown in logarithmic scale).

A Table Size Distribution in ToTTo

We measure the size of a table by the total amount
of pixels in its corresponding rendered image. We
then calculate the distribution of each size, and
group tables into 20 buckets accordingly. Each
bucket covers a logarithmically increasing amount
of table sizes. Figure 5 shows the resulting buck-
ets and the proportion of ToTTo examples in each
(development set). The quality of descriptions gen-
erated within each group, are evaluated in Section 6,
see Figure 4.

B Table-to-Text Generation Settings

Figure 6 illustrates how the image input to PixT3
differs according to three generation settings:
tightly controlled (the model is given only high-
lighted cells, no table), loosely controlled (the
model is given the table and highlighted cells), and
open-ended (the model is given the table without
any highlighting).

C Image Truncation and Down-scaling

We explored the impact of down-scaling on model
performance and its tradeoff with truncation. We
conducted a series of experiments wherein PixT3
models were trained on versions of ToTTo with
varying down-scaling factor γ: 0.87, 0.58, 0.39,
0.26, and 0.00. Note that γ=0.00 corresponds to a
setting where no truncation takes place, only down-
scaling. According to the results shown in Table 5,
it is best to combine truncation with down-scaling,

TControl

LControl

OpenE

Reference
On October 13, 1997, Canal de las Estrellas 
started broadcasting Huracán on 
weekdays.

Figure 6: PixT3 input image examples (and reference) in
three generation settings: tightly controlled (TControl),
loosely controlled (LControl), and open-ended (OpenE).

none of the extreme settings (no truncation vs too
much truncation) are beneficial. The optimal γ
value is 0.39.

D Intermediate Training

Synthetic Dataset Generation In this section
we provide a more detailed description regarding
the generation of synthetic tables for intermediate
training. As our goal was to generate tables with a
structure similar to ToTTo, we first measured the
probability distribution of columns, rows, column
spans and row spans for the tables in the training
set to avoid over-fitting and contamination. We
observed that the distribution of columns (up to
20 columns) remained almost constant across ta-
bles, and did not affect the probability distribution
of rows. As a result, we aggregated row numbers
across columns and computed a single distribution
for rows to simplify our generation task, using dis-
crete probability distributions. In order to limit the
size of the generated tables we cap the number of
columns and rows to 20 and 75, respectively. For
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PPPPPPEpoch
γ 0.00 0.26 0.39 0.57 0.87

16 28.71 29.13 29.47 29.58 27.47
17 28.99 29.53 29.99 29.70 27.69
18 29.67 30.04 30.55 30.21 28.13
19 29.98 30.04 30.63 30.54 28.33
20 29.83 30.21 30.68 30.53 29.39

Table 5: Evaluation results (BLUE) for PixT3 model
in tightly controlled generation setting for different γ
down-scaling factors. We show the Last five epochs on
the ToTTo training set.

the synthetic text within the cells, we randomly
generated digits in the [1–5] range and character
sequences from [A–Z, a–z] which gave us a total
of 776,520,240 permutations of possible unique
cell values.

Overall, we generated 120K tables accompanied
with target pseudo HTML descriptions. The latter
were on average 121 tokens long, with the longest
sequences containing 877 tokens. In experiments,
we observed that text size affects mainly the aver-
age count of tokens, whereas the number of table
columns and rows influences the length of the tar-
get sequences. The sequences follow a hierarchical
structure defined by the characters < and >. In
the first hierarchical level, one container can be
found for each highlighted cell in the table. Each
container includes, in the following order, the high-
lighted cell, the cells in all related columns, and
all cells in all related rows. This structure can
represent multiple related columns and rows per
highlighted cell, as well as multiple highlighted
cells per table.

Alternative Objectives We conducted a set of
experiments to identify the best self-supervised ob-
jective for our structure learning curriculum. In
addition to the objective presented in Section 4.2,
we also experimented with a masking objective.
Specifically, given a randomly generated table, we
filled each cell with text indicative of its position
in the table. We then masked random cells and the
model was trained to predict the missing cell values
(see Figure 7 for an example). We empirically ob-
served that this objective led to worse performance
compared to PixT3, even though it resulted in rela-
tively fast training, since the table can be converted
into a sequence with a small number of tokens.
We hypothesize that this objective only weakly en-
forces table structure learning as the model does
not need to pay attention to all the cells in a column
and row to guess the missing value but simply rely

Figure 7: Synthetically generated table with masked
cell. Filled cell values denote position in the table.

Dev Set (All) Test Set (Non) Test Set (Over) Test Set (All)

Model BLEURT BLEURT BLEURT BLEURT

T5-base 0.233 0.106 0.354 0.230
T5-3B 0.228 0.104 0.344 0.224
Lattice 0.226 0.103 0.348 0.226
CoNT 0.240 0.116 0.364 0.240T

C
on

tr
ol

PixT3 0.178 0.044 0.312 0.178

T5-base −0.298 −0.395 −0.191 -0.293
T5-3B −0.309 −0.416 −0.194 -0.305
Lattice −0.287 −0.382 −0.195 -0.288
CoNT −0.293 −0.387 −0.190 -0.289L

C
on

tr
ol

PixT3 0.169 0.047 0.287 0.167

T5-base −0.371 −0.458 −0.278 -0.368
T5-3B −0.385 −0.456 −0.301 -0.378
Lattice −0.377 −0.451 −0.302 -0.377
CoNT −0.370 −0.452 −0.281 -0.366O

pe
nE

PixT3 −0.332 −0.414 −0.258 −0.336

Table 6: BLEURT results on ToTTo for T5, PixT3,
Lattice, and CoNT in three generation settings: tightly
controlled (LControl), loosely controlled (LControl),
and open-ended (OpenE). In the TControl setting, T5 re-
sults are taken from Kale and Rastogi (2020) and CoNT
results from An et al. (2022). This table complements
results reported in Table 1.

on its closest neighbors. We also experimented
with a combination of the masking objective dis-
cussed here and the structure learning objective
described in Section 4.2. However, this model still
lagged behind PixT3.

E Additional Results and Examples

In addition to BLEU and PARENT reported in Ta-
bles 1 and 2, we also present results with BLEURT
in Table 6 and Table 7. We further show example
output on the Logic2Text dataset (zero-shot setting)
in Figure 8. In the TControl setting, CoNT strug-
gles to produce a coherent sentence, while PixT3
generates a faithful but not very informative one.
This is not surprising as the models receive noth-
ing but the title and highlighted cells, making it
extremely difficult to generate the target sentence.
In LControl, both models have access to the entire
table; however, they still produce a false statement,
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Model BLEURT

LLaVA −1.230
T5-base −1.086
T5-3B −1.079
Lattice −1.060
CoNT −1.103T

C
on

tr
ol

PixT3 −1.104

LLaVA −1.189
T5-base −1.147
T5-3B −1.167
Lattice −1.147
CoNT −1.159L

C
on

tr
ol

PixT3 −1.073

LLaVA −1.184
T5-base −1.237
T5-3B −1.196
Lattice −1.231
CoNT −1.231O

pe
nE

PixT3 −1.213

Table 7: Automatic evaluation results on Logic2Text in
three generation settings: tightly controlled (LControl),
loosely controlled (LControl), and open-ended (OpenE).
All models (except LLAVA) were fine-tuned on ToTTo
and tested on the Logic2Text. This table complements
results reported in Table 2.

most likely a consequence of the zero-shot nature
of our generation task. Finally, in the less con-
strained OpenE setting, PixT3 generates a coherent
and faithful sentence. While CoNT also produces a
fluent sentence, it incurs a faithfulness error when
mentioning "(+5)" instead of "(-5)". This is likely
due to the performance degradation this model ex-
periences when provided with the full table.

F LLaVA promts

As mentioned in Section 5, our zero-shot exper-
iments involved comparisons against LLaVA-1.5
(Liu et al., 2023), a large pretrained multimodal
model (13B parameters). We devised the following
prompts for each generation setting:

TControl "Here are some descriptions based on
other highlights of other tables ’chilawathurai had
the 2nd lowest population density among main
towns in the mannar district .’, ’zhou mi only
played in one bwf super series masters finals tour-
nament .’, ’tobey maguire appeared in vanity fair
later than mike piazza in 2003 .’. Now write a short
description based on the following highlighted cells
extracted form a table."

LControl "Here are some descriptions based on
the highlights of other tables not present in the in-
put: ’chilawathurai had the 2nd lowest population

density among main towns in the mannar district .’,
’zhou mi only played in one bwf super series mas-
ters finals tournament .’, ’tobey maguire appeared
in vanity fair later than mike piazza in 2003 .’. Now
write a short description based on the highlighted
cells in this table following the same style as the
example descriptions."

OpenE "Here are some descriptions from other
tables not present in the input: ’chilawathurai had
the 2nd lowest population density among main
towns in the mannar district .’, ’zhou mi only
played in one bwf super series masters finals tour-
nament .’, ’tobey maguire appeared in vanity fair
later than mike piazza in 2003 .’. Now write a short
description stating something from this table fol-
lowing the same style as the example descriptions."

G Human Evaluation Guidelines

We provide the full set of instructions presented to
crowdworkers for the human evaluation study. Our
participants were native English speakers from the
United Kingdom and the United States of America,
with a 50/50 equal gender split between male and
female.

Thank you for taking part in our experi-
ment! You will be presented with a table and
a computer-generated description of its con-
tent. Your task is to determine whether each
description is "True" or "False" based on the
information provided in the table and/or its title
and subtitle (you will see examples later-on).
No expert knowledge is required to perform
this task. You should evaluate the descriptions
given the information presented in the table,
without taking any other information into ac-
count (e.g., based on your own knowledge or
the web).

Here are some guidelines to help you with
your evaluation:

Acronyms: tables often have acronyms
which the descriptions might spell out. For
example, if the table mentions "TD" and the de-
scription correctly spells it out as "touch down,"
you should not consider this "False" (although
the description might be false for other rea-
sons).

Implicit information: the description might
mention information that can be inferred but is
not explicitly spelled-out in the table. For ex-
ample, it could mention "steam engines" when
the table lists theirs names without explicitly
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• Reference: Jim Colbert has the second best number of strokes to par.

• CoNT (TControl): Jim Colbert led the 1973 U.S. open (golf course)
with a score of to par.

• PixT3 (TControl): Jim Colbert took part in the 1973 U.S. open
(golf) tournament.

• CoNT (LControl): At the 1973 U.S. open (golf), Jim Colbert shot a
record of 267 (+1) and finished four strokes ahead of runner-up Lee
Janzen.

• PixT3 (LControl): Jim Colbert had a score of 142.

• CoNT (OpenE): Gary Player scored 137 (+5) and finished five
strokes ahead of runner-up Jim Colbert.

• PixT3 (OpenE): Gary Player won the 1973 U.S. Open (golf) with a
score of 137.

Figure 8: Logic2Text table and model output in three generation settings: tightly controlled (TControl), loosely
controlled (LControl), and open-ended (OpenE).

talking about steam engines. In this case, the
description should not be considered "False".

- You should evaluate each description inde-
pendently.

- If the description does not make sense
and is impossible to evaluate (usually when
summarizing very large tables), you should
consider it as "False".

We suggest starting by reading the description
and then referring to the table to verify if it aligns
with its claims.

This data elicitation study is performed by
researchers at [REDACTED]. If you have any
questions, feel free to contact [REDACTED].
Participation in this research is voluntary. You
have the right to withdraw from the experiment
at any time. The collected data will be used
for research purposes only. We will not col-
lect any personal information. Your responses
will be linked to your anonymous Prolific ID
for the exclusive purpose of conducting our
experiment.

H PixT3 Fine-tuning Hyper-parameters

PixT3 models across all three settings (TControl,
LControl, OpenE) were fine-tuned using the same

Hyperparameter Value

Optimizer AdamW
Learning rate 0.0001
Warm-up steps 1000
Max. input patches 2048
Shuffle train data False
Epochs 30
Train batch size 8
Gradient accum. steps 32
Mixed precision fp16
Evaluation batch size 32
Eval freq. steps 250
Inf. beam search 8 beams

Table 8: Hyperparameters used in PixT3.

hyper-parameters. To prevent over-fitting, we em-
ployed early stopping based on the BLEU score
computed on the validation set every 250 steps.
Table 8 enumerates the specific hyper-parameter
values used in PixT3, with all remaining parame-
ters set to the default values defined in Pix2Struct
(Lee et al., 2023).
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A B S T R A C T

Large Language Models (LLMs) have the potential of facilitating the development of Artificial Intelligence
technology to assist medical experts for interactive decision support. This potential has been illustrated by the
state-of-the-art performance obtained by LLMs in Medical Question Answering, with striking results such as
passing marks in licensing medical exams. However, while impressive, the required quality bar for medical
applications remains far from being achieved. Currently, LLMs remain challenged by outdated knowledge
and by their tendency to generate hallucinated content. Furthermore, most benchmarks to assess medical
knowledge lack reference gold explanations which means that it is not possible to evaluate the reasoning of
LLMs predictions. Finally, the situation is particularly grim if we consider benchmarking LLMs for languages
other than English which remains, as far as we know, a totally neglected topic. In order to address these
shortcomings, in this paper we present MedExpQA, the first multilingual benchmark based on medical exams
to evaluate LLMs in Medical Question Answering. To the best of our knowledge, MedExpQA includes for
the first time reference gold explanations, written by medical doctors, of the correct and incorrect options
in the exams. Comprehensive multilingual experimentation using both the gold reference explanations and
Retrieval Augmented Generation (RAG) approaches show that performance of LLMs, with best results around
75 accuracy for English, still has large room for improvement, especially for languages other than English,
for which accuracy drops 10 points. Therefore, despite using state-of-the-art RAG methods, our results also
demonstrate the difficulty of obtaining and integrating readily available medical knowledge that may positively
impact results on downstream evaluations for Medical Question Answering. Data, code, and fine-tuned models
will be made publicly available.1

1. Introduction

We are currently seeing a dramatic increase in research on how to
apply Artificial Intelligence (AI) to the medical domain with the aim
of generating decision support tools to assist medical experts in their
everyday activities. This has been further motivated by rather strong
claims about Large Language Models (LLMs) in medical Question An-
swering (QA) tasks, such as that they obtain passing marks for medical
licensing exams like the United States Medical Licensing Examination
(USMLE) [1,2].

Assisting medical experts by answering their medical questions is a
natural way of articulating human-AI interaction as it is usually consid-
ered that Medical QA involves processing, acquiring and summarizing
relevant information and knowledge and then reasoning about how to
apply the available knowledge to the current context given by a clinical
case. For example, a resident medical doctor preparing for the licensing

∗ Corresponding author.
E-mail addresses: inigoborja.alonso@ehu.eus (I. Alonso), maite.oronoz@ehu.eus (M. Oronoz), rodrigo.agerri@ehu.eus (R. Agerri).

1 https://huggingface.co/datasets/HiTZ/MedExpQA.

exams may want to know what and why is the correct treatment or
diagnosis in the context of a clinical case [3,4]. This means that a LLM
should be able to automatically identify, access and correctly apply the
relevant medical knowledge, and that it will be capable of elucidating
between the variety of symptoms, each of which may be indicative of
multiple diseases. Finally, it is also assumed that the model will interact
with the resident medical doctor in a natural manner, ideally using
natural language. Therefore, developing the required AI technology to
help, for example, resident medical doctors to prepare their licensing
exams remains a far from trivial endeavour.

Nonetheless, and as a crucial first step to address this challenge,
the AI ecosystem has seen an explosion of LLMs (both general purpose
and specific to the medical domain) reporting high accuracy results on
Medical QA tasks thereby demonstrating that LLMs are somewhat capa-
ble of encoding clinical knowledge [1]. State-of-the-art models include

https://doi.org/10.1016/j.artmed.2024.102938
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Fig. 1. Graphical description of the MedExpQA benchmark in which various types of gold and external medical knowledge are added to Large Language Models in order to find
the correct answer in the CasiMedicos dataset.

publicly available ones such as LLaMA [5] and the medical-specific
PMC-LLaMA [6], Mistral [7] and its medical version BioMistral [8], and
proprietary models such as MedPaLM [9] and GPT-4 [2], among many
others.

While their published high-accuracy scores on Medical QA may
seem impressive, these LLMs still present a number of shortcom-
ings. First, LLMs usually generate factually inaccurate answers that
seem plausible enough for a non-medical expert (known as halluci-
nations) [10,11]. Second, their knowledge might be outdated as the
pre-training data used to train the LLMs may not include the latest
available medical knowledge. Third, the Medical QA benchmarks [1,
11] on which they are evaluated do not include gold reference explana-
tions generated by medical doctors that provide the required reasoning
to support the model’s predictions. Finally, and to the best of our
knowledge, evaluations have only been done for English, which makes
it impossible to know how well these LLMs fare for other languages.

Retrieval Augmented Generation (RAG) techniques have been
specifically proposed to address the first two issues, namely, the lack
of up-to-date medical knowledge and the tendency of these models
to hallucinate [11]. Their MedRAG approach obtains clear zero-shot
improvements for two of the five datasets on their MIRAGE bench-
mark, while for the rest the obtained gains are rather modest. Still,
MedRAG proves to be an effective technique to improve Medical QA by
incorporating external medical knowledge [11].

In this paper we present MedExpQA (Medical Explanation-based
Question Answering), which is, to the best of our knowledge, the
first multilingual benchmark for Medical QA. Furthermore, and un-
like previous work, our new benchmark also includes gold reference
explanations to justify why the correct answer is correct and also to
explain why the rest of the options are incorrect. Written by medical
doctors, these high-quality explanations help to assess the model’s deci-
sions based on complex medical reasoning. Moreover, our MedExpQA
benchmark leverages the reference explanations as gold knowledge to
establish various upperbounds for comparison with results obtained
when applying automatic MedRAG methods. By doing so, we aim to
address all four shortcomings of LLMs for Medical QA listed above.

Although by design independent of the specific source data used,
for this work we leverage the Antidote CasiMedicos dataset [4,12],
which consist of Resident Medical Exams or Médico Interno Residente
in Spanish, an exam similar to other licensing examinations such as
USMLE, to setup MedExpQA. In addition to a short clinical case, a
question and the multiple-choice options, CasiMedicos includes gold
reference explanations regarding both the correct and incorrect options.
Originally in Spanish, CasiMedicos was translated and annotated in
English, French and Italian [4].

Fig. 1 provides an overview of the MedExpQA benchmark. Taking
CasiMedicos as the data source, the basic input, without any additional

Fig. 2. Overview of averaged results in MedExpQA for gold and automatically knowl-
edge grounding based on Retrieval Augmented Generation (RAG). E : gold explanations
written by medical doctors; H : E with explicit references to the possible answers
hidden; and EI : gold explanations about the incorrect options; RAG-32: automatically
retrieved knowledge grounding (details in Section 5); no-grounding : baseline model with
no external knowledge.

knowledge, to the LLM consists of a clinical case and the multiple-
choice options. Furthermore, the model can also be provided with three
types of gold reference explanations (or gold knowledge grounding) ex-
tracted from the CasiMedicos explanations: (i) the full gold explanation
as written by the medical doctors; (ii) only the explanations regarding
the incorrect answers and, (iii) the full gold explanation with explicit
references to the possible answers hidden. Finally, we can also apply
automatic knowledge retrieval approaches such as MedRAG to provide
LLMs with automatically obtained up-to-date medical knowledge. Thus,
in MedExpQA it is possible to compare not only whether the MedRAG
methods improve over the basic input with no external knowledge
added, but also to establish the differences in performance of LLMs
(with or without RAG) with respect to results obtained when gold ref-
erence explanations are available. An additional benefit of MedExpQA
being multilingual is that we get to compare LLMs performance not
only for English, but also on popular languages such as Spanish, French
or Italian.

Fig. 2 shows that comprehensive multilingual experimentation on
MedExpQA using four state-of-the-art LLMs including LLaMA [5] PMC-
LLaMA [6], Mistral [7] and BioMistral [8], demonstrate that LLMs per-
formance, even when improved with external knowledge from MedRAG
(corresponding to RAG-32 in Fig. 2), still has a long way to go to get
closer to the performance obtained when the external knowledge avail-
able to the LLM is based on gold reference explanations (E and H in
Fig. 2). Another interesting point is that fine-tuning results in huge per-
formance increases across settings and models but at the cost of making
MedRAG redundant. In other words, MedRAG only has a positive impact
in zero-shot settings. We believe that this illustrates the difficulty of
automatically retrieving and integrating readily available knowledge in
a way that may positively impact final downstream results on Medical
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QA. Finally, results are substantially lower for French, Italian and
Spanish, which suggests that more work is needed to improve LLMs
performance for languages different to English. Summarizing, the main
contributions of our work are the following:

1. MedExpQA: the first multilingual benchmark for MedicalQA
including gold reference explanations.

2. Comprehensive study on the role of medical knowledge to an-
swer medical exams by leveraging gold reference explanations
written by medical doctors as upper bound with respect to
automatically retrieved knowledge using state-of-the-art RAG
techniques.

3. Experimental results demonstrate that fine-tuning clearly out-
performs querying the LLMs in zero-shot, making redundant the
external knowledge obtained via RAG.

4. Overall performance of LLMs with or without RAG still has large
room for improvement when compared with any of the results
obtained using gold reference explanations.

5. Performance for French, Italian and Spanish substantially lower
for every LLM in every evaluation setting, which stresses the
urgent need of advancing the state-of-the-art for Medical QA in
languages different to English.

6. Data, code and fine-tuned models available to facilitate repro-
ducibility of results and benchmarking of LLMs in the medical
domain2.

In the rest of the paper we first discuss the related work and then
in Section 3 we describe the Large Language Models (LLM) and the
Retrieval Augmented Generation method used for experimentation.
Section 4 provides a description of the MedExpQA benchmark, in-
cluding the Antidote CasiMedicos dataset. The experimental setup is
explained in Section 5 and results are reported in Section 6. Section 7
offers a discussion of the main issues raised by the empirical results
obtained. We finish with some concluding remarks and future work in
Section 8.

2. Related work

We are currently seeing a vertiginous rhythm in the development
of Large Language Models (LLMs) which is having a great impact on
Natural Language Processing for the medical domain. This is partic-
ularly true on Medical Question Answering tasks where LLMs have
been successfully applied to generate answers to highly specialized
medical questions. Thus, the performance improvements on Abstractive
Medical Question Answering of general purpose LLMs such GPT-4 [2]
and GPT-3 [13], PaLM [14], LLaMa [5] or Mistral [7], has resulted in a
huge interest to adapt or to generate LLMs specialized for medical text
processing.

Some of these models are based on the encoder–decoder archi-
tecture, such as SciFive [15], and English T5 model adapted to the
scientific domain, or Medical-mT5, a multilingual model built by fine-
tuning mT5 on a multilingual corpus of 3B tokens [16]. However,
the large majority of the LLMs specially generated for medical ap-
plications are autorregresive decoder models such as BioGPT [17],
ClinicalGPT [18], Med-PaLM [1], MedPaLM-2 [9], PMC-LLaMA [6],
and more recently, BioMistral [8].

These models have been reporting high-accuracy scores on var-
ious medical QA benchmarks, which generally consist of exams or
general medical questions. Several of the most popular Medical QA
datasets [19–24] have been grouped into two multi-task English bench-
marks, namely, MultiMedQA [1] and MIRAGE [11] with the aim of
providing an easier comprehensive experimental evaluation benchmark
of LLMs for Medical QA.

2 https://huggingface.co/datasets/HiTZ/MedExpQA

Despite recent improvements on these benchmarks that had led to
claims about the capacity of LLMs to encode clinical knowledge [1],
these models remain hindered by well known issues related to: (i) their
tendency to generate plausible-looking but factually inaccurate answers
and, (ii) working with outdated knowledge as their pre-training data
may not be up-to-date to the latest available medical progress; (iii)
the large majority of these benchmarks do not include gold reference
explanations to help evaluate the reasoning capacity of LLMs to predict
the correct answers; (iv) they have mostly been developed for English,
which leaves a huge gap regarding the evaluation of the abilities of
LLMs for other languages.

Regarding the first issue listed above, it should be considered that
these LLMs are not restricted to the input context to generate the
answer as they are able to produce word by word output by using their
entire vocabulary in an auto-regressive manner [25]. This often results
in answers that are apparently plausible and factually correct, when in
fact they are not always factually reliable. With respect point (ii), while
LLMs are pre-trained with large amounts of texts, they may still lack the
specific knowledge required to answer highly specialized questions or
it may simply be in need of an update.

Recent work [26] has proposed Retrieval Augmented Generation
(RAG) [27] to mitigate these limitations. This method involves incor-
porating relevant external knowledge into the input of these LLMs with
the aim of improving the final generation. By doing so, it increases the
probability of generated responses being grounded in the automatically
retrieved evidence, thereby enhancing the accuracy and quality of the
output. Some of the most common retrieval methods employed include
TF-IDF, BM25 [28], and others more specific to the medical domain
such as MedCPT [29]. With the aim of providing an exhaustive evalua-
tion of RAG methods for the medical domain, the MIRAGE benchmarch
includes 5 well-known English Medical QA datasets which are used
to compare zero-shot performance of various LLMs whenever auto-
matically retrieved knowledge is available via their MedRAG method
or in the absence of it. According to the authors, MedRAG not only
helps to address the problem of hallucinated content by grounding the
generation on specific contexts, but it also provides relevant up-to-date
knowledge that may not be encoded in the LLM [11]. By employing
MedRAG they are able to clearly improve the zero-shot results of some
of the LLMs tested, although for others results are rather mixed.

Finally, and to the best of our knowledge, no Medical QA bench-
mark currently addresses the last two shortcomings, namely, the lack of
gold reference explanations and multilinguality. Motivated by this, we
propose MedExpQA, a multilingual benchmark including gold reference
explanations written by medical doctors that can be leveraged to setup
various upperbound results to be compared with the performance of
LLMs enhanced by automatic RAG methods.

3. Materials and methods

In this section we describe the main resources used in our ex-
perimentation with MedExpQA, namely, the Large Language Models
(LLMs) tested on our benchmark and MedRAG, the Retrieval Aug-
mented Generation method proposed by Xiong et al. [11] to automati-
cally retrieve medical knowledge.

3.1. Models

We selected two open source state-of-the-art LLMs in the MedicalQA
domain at the time of writing: PMC-LLaMA [6] and BioMistral [8].

PMC-LLaMA is based on LLaMA [5], one of the most popular LLMs
currently available. PMC-LLaMA is an open-source language model
specifically designed for medical applications. This model was first pre-
trained on a combination of PubMed-related English academic papers
from the S2ORC corpus [30] and from medical textbooks. It was then
further fine-tuned on a dataset of instruction-based medical texts. For
our experiments we pick the 13B parameter variant of this model which
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outperforms LLaMA-2 [5], Med-Alpaca [31], and Chat-Doctor [32] in
various Medical QA tasks including MedQA [23], MedMCQA [24], and
PubMedQA [19].

BioMistral [8] is a suite of open-source models based on Mistral [7]
further pre-trained using English textual data from PubMed Central
Open Access3. They released a set of 7b parameter models following
merging techniques like TIES [33], DARE [34], and SLERP [35]. In this
paper we use the DARE variant of BioMistral as it is the best performing
model on the MedQA benchmark, outscoring other state-of-the-art
LLMs on Medical QA evaluations, including PMC-LLaMA.

Additionally, and in order to contrast their performance against
their general purpose counterparts, we also test LLaMA-2 and Mistral.
Thus, for both PMC-LLaMa and LLaMA-based models we use the 13
billion parameter variants. As BioMistral is only available in the 7b
version, we also pick the Mistral model of 7b parameters.

Every zero-shot and fine-tuning experiment with LLMs are per-
formed via the HuggingFace API [36].

3.2. Retrieval-augmented generation (RAG)

We apply MedRAG as the Retrieval-Augmented Generation (RAG)
state-of-the-art technique especially developed for the medical do-
main [11]. RAG approaches are mostly composed of three components:
the LLM, the retrieval method and the data source from which to
retrieve the knowledge. MedRAG includes four retrievers and four
different corpora as data sources.

With respect the retrievers, we use both BM25 [28] and Med-
CPT [29] to perform the retrieval and fuse the retrieved candidate lists
into one using Reciprocal Rank Fusion (RRF) [37]. BM25 is a ranking
function used in Information Retrieval to rank documents based on
their relevance to a given query. It combines Term Frequency (TF) and
Inverse Document Frequency (IDF) to calculate the relevance score of
a document to a query taking into account the document length for
normalization. MedCPT is a Contrastive Pre-trained Transformer model
trained with PubMed search logs for zero-shot biomedical information
retrieval. This model retrieves the relevant documents in the knowledge
base considering relationships between different medical entities and
concepts in the query.

Regarding the data sources, we use MedCorp, a combination of
the four corpora available in MedRAG: PubMed, Textbooks [23] for
domain-specific knowledge, StatPearls4 for clinical decision support,
and Wikipedia for general knowledge. According to the MIRAGE re-
sults [11], using MedCorp was the only realistic option for MedRAG to
systematically improve results over the baseline for most of the LLMs
and retriever methods evaluated.

4. MedExpQA: A new multilingual benchmark for medical QA

Although independently designed with respect to any specific
dataset, in this paper we setup MedExpQA, introduced in Section 4.2,
on the Antidote CasiMedicos dataset [4,12], which is described in
detailed in Section 4.1.

4.1. Antidote CasiMedicos dataset

Every year the Spanish Ministry of Health releases the previous
year’s Resident Medical exams or Médico Interno Residente (MIR) which,
as depicted in Table 1, include a clinical case (C), the multiple choice
options (O), and the correct answer (A). The MIR exams are then
commented every year by the CasiMedicos MIR Project 2.05 which

3 PMC Open Access Subset. Available from https://www.ncbi.nlm.nih.gov/
pmc/tools/openftlist/

4 https://www.statpearls.com/
5 https://www.casimedicos.com/mir-2-0/

means that CasiMedicos medical doctors voluntarily write gold refer-
ence explanations (full gold explanation E in Table 1) providing reasons
for both correct (EC) and incorrect options (EI).

The Antidote CasiMedicos dataset [4,12] consists of the original
Spanish commented exams which were cleaned, structured and man-
ually annotated to link the relevant textual parts in the gold reference
explanation (E) with the correct (EC) or incorrect options (EI). Once
the Spanish version of the dataset was created, parallel translated
annotated versions were generated for English, French, and Italian.

A quantitative description of the multilingual Antidote CasiMedicos
dataset is given in Table 2. The average number of tokens in the clinical
cases is 137, being quite similar for Spanish and Italian (140.3 and
142.2 respectively), while for English the average is smaller (115.4
tokens) while the French one is the largest (150.1 tokens). The average
length in tokens of the multiple choice options (79.6 tokens in average)
is quite high but with a high variability. The multiple choice options
may consist of short drug names (the minimum number of words is
around 15–17) to long descriptions of treatments or medical claims as
illustrated by the example shown in Table 3. The full gold reference
explanations that professional medical doctors write can be quite long
(170.25 tokens in average) but it should be noted that some documents
lack the explanation about the correct answer.

The complexity of some of the clinical case questions can be ap-
preciated in the example shown in Table 3 where the possible answers
(section O) describe disorders (option (1)), treatments (options (2) and
(3)) or medical statements (options (4) and (5)). Furthermore, while
in the majority of the cases the question is about the correct answer,
sometimes the required option is the incorrect one, as shown in Tables 1
and 3.

The final Antidote CasiMedicos Dataset consists of 622 documents
per language [4,12]. The dataset official distribution already provide
train, validation and test splits6 (depicted in Table 4), which we use
for the all the experiments presented in Section 6.

Finally, we examined the distribution of correct answers in each of
the three splits (train, validation and test) to consider the possibility
that an unbalanced distribution might condition the results of the tested
models. Fig. 3 shows that, although most of the exams have the option
3 as the correct answer, the distribution among the correct answers in
the three subsets is quite balanced. This suggests that this particular
issue should not influence the final experimental results.

4.2. The MedExpQA benchmark

MexExpQA is a multilingual benchmark to evaluate LLMs in Med-
ical Question Answering. Unlike previous work, MedExpQA includes
reference gold explanations written by medical doctors which are
leveraged to setup a benchmark with three types of gold knowledge:
(i) the full gold reference explanation (part E in Table 1); (ii) the full
gold reference explanation corresponding to the incorrect options only
(EI) and (iii), the full gold reference explanation masking the explicit
references in the text to the multiple-choice options.

In other words, and as illustrated in Fig. 1, we use these three types
of high-quality explanations written by medical doctors as a proxy of
relevant gold knowledge that may be used by LLMs to answer medical
questions. Thus, the results obtained by LLMs with each type of gold
knowledge can be seen as the upperbound results provided by our
benchmark to establish how well LLMs can perform according to the
different types of specialized gold knowledge readily available. In the
following we describe in detail each of the three types of gold reference
explanations that we generate to setup our benchmark.

6 https://huggingface.co/datasets/HiTZ/casimedicos-exp
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Table 1
Document in the Antidote CasiMedicos dataset with the correct and incorrect explanations manually
annotated. C: Clinical case and question; O: Multiple-choice options; A: Correct answer; E: Full gold reference
explanation written by medical doctors; EC: Explanation about the correct answer; EI: Explanation about
the incorrect answers.
C 30-year-old man with no past history of interest. He comes for consultation due to

the presence of small erythematous-violaceous lesions that on palpation appear to be
raised in the pretibial region. The analytical study shows a complete blood count and
coagulation study without alterations, and in the biochemistry, creatinine and ions
are also within the normal range. The urinary sediment study shows hematuria, for
which the patient had already been studied on other occasions, without obtaining a
definitive diagnosis. Regarding the entity you suspect in this case, it is FALSE that

O (1) In 20 to 50% of cases there is elevation of serum IgA concentration.
(2) In the renal biopsy the mesangial deposits of IgA are characteristic.
(3) It is frequent the existence of proteinuria in nephrotic range.
(4) It is considered a benign entity since less than 1/3 of patients progress to renal
failure.
(5) The cutaneous biopsy allows to establish the diagnosis in up to half of the cases.

A 3

E They are talking to us with high probability of a mesangial IgA glomerulonephritis
or Berger’s disease. Therefore, we are going to discard options one by one: 1: True.
Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits
are present in almost 100% of cases. 3: This option is false, because this
glomerulonephritis is classically manifested with nephritic and not nephrotic
syndrome (although in some rare cases proteinuria in nephrotic range does appear,
but in the MIR they do not ask about these rare cases). 4: At the beginning this
option generated doubts in me, but looking in the literature, it is true that the
evolution to renal failure (according to last series) occurs in about 25% of the cases,
so this option is true. 5: Skin biopsy, because it is easier to perform than renal
biopsy, is the diagnostic technique of choice (the skin lesions that constitute
Schonlein-Henoch purpura, so frequently associated with this entity and which the
patient in the case presents, are biopsied).

EC 3: This option is false, because this glomerulonephritis is classically manifested with
nephritic and not nephrotic syndrome (although in some rare cases proteinuria in
nephrotic range does appear, but in the MIR they do not ask about these rare cases).

EI 1: True. Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA
deposits are present in almost 100% of cases. 4: At the beginning this option
generated doubts in me, but looking in the literature, it is true that the evolution to
renal failure (according to last series) occurs in about 25% of the cases, so this
option is true. 5: Skin biopsy, because it is easier to perform than renal biopsy, is
the diagnostic technique of choice (the skin lesions that constitute Schonlein-Henoch
purpura, so frequently associated with this entity and which the patient in the case
presents, are biopsied).

Table 2
Quantitative description of the multilingual CasiMedicos dataset. Number of tokens in the clinical case including: the question
(C), the multiple-choice options (O), the explanation about the correct answer (EC) and the full gold reference explanation
(E) including argumentation about the correct and incorrect answers.

Number of tokens Average Min Max

Spanish

Clinical Case (C) 140.3 ± 62.4 41 504
Multiple choice options (O) 77.0 ± 47.0 15 297
Explanation about the correct (EC) 58.9 ± 37.7 0 483
Full explanation (E) 174.1 ± 147.8 9 982

English

Clinical Case (C) 115.4 ± 52.8 34 419
Multiple choice options (O) 64.7 ± 37.1 15 217
Explanation about the correct (EC) 47.3 ± 30.4 0 382
Full explanation (E) 139.1 ± 117.7 4 784

Italian

Clinical Case (C) 142.2 ± 64.5 35 539
Multiple choice options (O) 79.0 ± 50.1 17 284
Explanation about the correct (EC) 60.6 ± 38.4 0 500
Full explanation (E) 179.1 ± 150.6 8 1013

French

Clinical Case (C) 150.1 ± 68.6 39 586
Multiple choice options (O) 83.0 ± 52.8 16 319
Explanation about the correct (EC) 63.9 ± 41.2 0 535
Full explanation (E) 188.7 ± 158.9 8 1076

Avg. ALL

Clinical Case (C) 137
Multiple choice options (O) 79.6
Explanation about the correct (EC) 57.6
Full explanation (E) 170.25
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Table 3
Example of a document in the CasiMedicos dataset with very different types of response options. (1)
diagnosis; (2) and (3) treatments; and (4) and (5) correspond to medical statements.

Example of a document from the CasiMedicos Dataset

C A 63-year-old woman comes to the emergency department reporting severe headache
with signs of meningeal irritation, bilateral visual disturbances and ophthalmoplegia.
A CT scan showed a 2 cm space-occupying lesion in the sella turcica compatible
with pituitary adenoma with signs of intratumoral hemorrhage, with deviation of the
pituitary stalk and compression of the glandular tissue. Mark which of the following
answers is WRONG:

O (1) Diagnostic suspicion is pituitary apoplexy.
(2) Treatment with high-dose corticosteroids should be initiated and the evolution
observed, since this treatment could reduce the volume of the lesion and avoid
intervention.
(3) Treatment with glucocorticoids should be considered to avoid secondary adrenal
insufficiency that would compromise the patient’s vital prognosis.
(4) The presence of ophthalmoplegia and visual defects are indications for prompt
intervention by urgent surgical decompression.
(5) After resolution of the acute picture, the development of panhypopituitarism is
frequent.

A 4

Fig. 3. Distribution of correct answers in the train, validation and test splits. The percentage in blue indicates the proportion of exams with the first option, number 1, as correct
answer; orange corresponds to option 2; yellow to option 3; green to option 4; and brown to option 5. Note that not every document includes 5 possible options. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Number of documents in CasiMedicos train, validation and test splits.

Train Validation Test

Clinical cases 434 63 125

Total 622

4.2.1. Full reference gold explanations
The full explanation (E) about the correct and incorrect answers is

given as context to the LLM, in what we assume to be gold specific
knowledge for the model to answer the medical questions of CasiMedi-
cos. Being the full gold reference explanation, we consider this to be the
best possible form of gold knowledge that we can provide the LLM with.
In other words, the performance obtained in MedExpQA using this type
of knowledge will mark the upperbound for this particular benchmark.
Table 5 provides an example of the full gold reference explanation for
the same document already discussed in Table 1.

4.2.2. Explanation of the incorrect options
As shown in Table 6, for this particular type of gold knowledge we

only use the part of the full gold reference explanation corresponding
to the explanations about the incorrect options (EI). This type gold
knowledge aims to test the capacity of LLMs to correctly answer the
medical question by knowing which options are incorrect.

Depending on the nature of the question, sometimes medical doctors
consider sufficient to only explain the correct answer. Thus, it should
be noted that not every document in CasiMedicos includes the gold

reference explanations about the incorrect options. On average, 20.5%
of the explanations correspond in their entirety to the correct answer
(17.7% in the train set, and 22.2% and 21.6% in the validation and test,
respectively), while 26.7 include the explanations for all the possible
options. Obviously, as CasiMedicos is a multilingual parallel dataset,
this phenomenon occurs across the four languages: English, French,
Italian and Spanish.

4.2.3. Full gold explanation with explicit references hidden
As it can be appreciated in the full gold reference explanations

discussed above, most of the time medical doctors provide explicit
textual references regarding the correct or incorrect options. In order
to analyze the impact of these explicit signals or patterns on the LLMs
performance, we decided to mask those explicit references to establish
how well LLMs could answer with actual gold knowledge but without
the easy clues in the text pointing to the correct or incorrect answers.

In order to avoid the manual annotation of 2488 documents, we
prompt GPT-47 [38] with a set of rules and in-context-learning exam-
ples to automatically mask the specific areas of text that may point the
model at the correct or incorrect answer without any further reasoning.
The prompt can be found in A, Fig. A.10.

A small manual analysis of a subset of GPT-4-generated texts re-
vealed a strong correlation with human annotations. To further validate
the efficacy of our method, we randomly selected 80 documents (20 per

7 gpt-4-1106-preview
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Table 5
Full explanation (E) of the example in Table 1. The explanation about the correct answer is marked in blue and the remaining
4 explanations for the incorrect options in green.
E They are talking to us with high probability of a mesangial IgA glomerulonephritis or Berger’s

disease. Therefore, we are going to discard options one by one: 1: True. Serum IgA elevation is found
in up to 50% of cases. 2: True. Mesangial IgA deposits are present in almost 100% of cases. 3: This
option is false, because this glomerulonephritis is classically manifested with nephritic and not
nephrotic syndrome (although in some rare cases proteinuria in nephrotic range does appear, but in
the MIR they do not ask about these rare cases). 4: At the beginning this option generated doubts in
me, but looking in the literature, it is true that the evolution to renal failure (according to last series)
occurs in about 25% of the cases, so this option is true. 5: Skin biopsy, because it is easier to
perform than renal biopsy, is the diagnostic technique of choice (the skin lesions that constitute
Schonlein-Henoch purpura, so frequently associated with this entity and which the patient in the case
presents, are biopsied).

Table 6
Explanation of the Incorrect Options (EI) which corresponds to the full explanation (E) of the example in
Table 1 with the explanation of the correct answer removed.
EI They are talking to us with high probability of a mesangial IgA glomerulonephritis

or Berger’s disease. Therefore, we are going to discard options one by one: 1: True.
Serum IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits
are present in almost 100% of cases. 5: Skin biopsy, because it is easier to perform
than renal biopsy, is the diagnostic technique of choice (the skin lesions that
constitute Schonlein-Henoch purpura, so frequently associated with this entity and
which the patient in the case presents, are biopsied).

Table 7
Full gold reference explanation with explicit references hidden (H). Process performed by GPT-4 with the
prompt in A Fig. A.10. In this example the segments ‘This option is false’, ‘so this option is true’ and ‘is the
diagnostic technique of choice’ are hidden.
H They are talking to us with high probability of a mesangial IgA glomerulonephritis or

Berger’s disease. Therefore, we are going to discard options one by one: 1: True. Serum
IgA elevation is found in up to 50% of cases. 2: True. Mesangial IgA deposits are present
in almost 100% of cases. 3: [HIDDEN], because this glomerulonephritis is classically
manifested with nephritic and not nephrotic syndrome (although in some rare cases
proteinuria in nephrotic range does appear, but in the MIR they do not ask about these
rare cases). 4: At the beginning this option generated doubts in me, but looking in the
literature, it is true that the evolution to renal failure (according to last series) occurs in
about 25% of the cases, [HIDDEN]. 5: Skin biopsy, because it is easier to perform than
renal biopsy, is the [HIDDEN] (the skin lesions that constitute Schonlein-Henoch purpura,
so frequently associated with this entity and which the patient in the case presents, are
biopsied).

language) and measured performance across the four languages. This
resulted in an average F1 score of 0.85 with a standard deviation of
0.02.

Thus, this method allowed us to perform this rather precise mul-
tilingual redacting process over the 2488 documents in a fast and
cost effective manner. Table 7 shows how every explicit reference to
the correct or incorrect answers discussed previously now appear as
[hidden].

The results obtained by LLMs in MedExpQA using the three types of
gold knowledge described above can then be compared with other auto-
matic knowledge retrieval approaches based, for example, on Retrieval-
Augmented Generation techniques for the medical domain such as
MedRAG, introduced in the previous section. Furthermore, we should
stress that MedExpQA as a benchmark is independent of any dataset,
as the only requirement is for it to include gold reference explanations
of the possible answers.

5. Experimental setup

For our experiments we selected top performing state-of-the-art
models for Medical Question Answering described in Section 3.1,
namely, PMC-LLaMA, LLaMA-2, BioMistral, and Mistral.

We test these models in both zero-shot (see prompts in Figs. A.6–
A.9) and fine-tuned settings to contrast their out-of-the-box perfor-
mance against a more adjusted performance to our dataset. The mod-
els were fine-tuned using Low-Rank Adaptation (LoRA) [39], using
adapters with a rank of 8 and a scaling factor (alpha) of 16 across all
models (details about parameters used with LoRA are provided in C).

The choice of hyperparameters was based on previous work using
the same LLMs we use in this papers. Moreover, satisfactory results
were confirmed in a preliminary round of experiments. Although these
models would benefit from an exhaustive grid search of hyperpa-
rameters tailored to each model and evaluation setting, the compute
required to do so exceeds the capacity of our lab. Full details of
hyperparameter settings are available in B. Each model was fine-tuned
for 10 epochs, with checkpoints saved at the end of each. Experiments
were undertaken in a NVIDIA A100 GPU (C offers information about
computation times). At the end of the fine-tuning process, the check-
point with the highest performance was selected. All models underwent
monolingual training using the dataset corresponding to each specific
language. We will measure the impact on MedExpQA of the different
types of knowledge that LLMs may use:

(i) Gold grounding knowledge:

(1) E: Full gold reference explanations as written by the
medical doctors.

(2) EI: Gold explanations about the Incorrect Options.
(3) H: Full gold explanations with [hidden] explicit references

to the multiple-choice options.

(ii) Automatically obtained grounding knowledge:

(1) None: Answering the medical question with no additional
external knowledge.

(2) RAG-7: Automatically obtained knowledge by applying
MedRAG to retrieve the k=7 most relevant documents.

(3) RAG-32: Automatically obtained knowledge by applying
MedRAG to retrieve the k=32 most relevant documents.
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Fig. 4. Distribution of retrieved documents across different context windows. Three
different histograms are shown that depict the maximum number of documents
that can be accommodated within various context windows across dataset examples:
2,048 tokens (PMC-LLaMA), 4,096 tokens (LLaMA2), and 8,192 tokens (Mistral and
BioMistral).

We use the entire clinical case, question, and multiple-choice op-
tions to generate the query for all 6 different evaluation settings.
Gold knowledge grounding is leveraged as explained in the previous
section. With respect to the methods to automatically obtained external
knowledge, we take into account the results obtained in the mirage
benchmark [11] and apply MedRAG by using the RRF-2 of two retrieval
algorithms, namely, BM25 and MedCPT, over the MedCorp corpus. We
use the entire clinical case, question, and multiple-choice options to
generate the query to retrieve the k = 7 most relevant documents.
We define k = 7 by computing the average token length of MedCorp
documents; if we consider that 85% of our prompts can be represented
under 400 tokens, this leaves 1648 tokens for knowledge grounding,
which amounts to 7 documents on average. This configuration is used
to define RAG-7.

Furthermore, as MedRAG obtained best results for most of the
benchmarks when retrieving at most 32 documents, we also experi-
mented with this setting. Nevertheless, it should be considered that
the context window of each model, namely, the maximum amount of
word tokens that each LLM can pay attention to in the input, will
determine how many of these documents are actually fed into the
LLM at each forward pass. Hence, when the combination of both the
retrieved documents and the prompt exceed the context window, then
we truncate the amount of documents to ensure that the prompt is not
affected. Fig. 4 illustrates the distribution of documents corresponding
to different context window sizes. Specifically, it shows the number of
examples in the dataset that align with varying numbers of retrieved
documents for context windows of 2048, 4096, and 8000 tokens. In
the results reported in the next section, RAG-32 for both zero-shot and
fine-tune settings helps us to evaluate the impact of retrieving more or
less relevant documents as external knowledge.

5.1. Evaluation

We ask LLMs to generate not only the index number of the predicted
correct option but also the full textual answer. However, accuracy is
calculated by comparing the first generated character after the prompt
following ‘‘The correct answer is: ’’8. We verify that this character always
corresponds to one of the options in the exams’ possible answers. A
provides an example of the prompts used for each language and for
every model.

8 And equivalent prompts for French, Italian and Spanish.

6. Results

We report the main results of the experiments performed in the
MedExpQA benchmark in Table 8 for zero-shot while the fine-tuning
accuracy scores are presented in Table 9.

Zero-shot results. They show that Mistral consistently achieves the
highest accuracy across every evaluation setting and language, even
outscoring the medical specific BioMistral. Among the gold knowledge
results, we can see that removing the explanation of the correct answer
(EI) really hinders performance. However, using the full gold reference
answer helps LLMs to obtain excellent marks. Moreover, differences be-
tween using E and H are quite large, especially for languages different
to English.

It should be noted that the best automatic method still fares very
badly with respect to any of the gold knowledge results, which shows
that retrieval methods for the medical domain still have large room for
improvement. While the best automatic method corresponds to RAG-7,
differences in performance are not that great with respect to None or
RAG-32.

We hypothesize that the lack of substantial improvement when us-
ing 32 snippets for knowledge grounding may indicate that a saturation
point may be reached beyond which additional snippets do not provide
any additional benefit. To analyze this more precisely, we conducted an
evaluation of the zero-shot performance of the 4 LLMs when feeding
the model from 0 to up to 32 snippets, following a power of two
sequence of snippets. Thus, Fig. 5 illustrates that a positive trend exists
when increasing the number of snippets. However, we can see how this
improvement tanks at around 8 snippets in most of the models. This
result correlates to our findings in Tables 8 and 9.

Finally, performance on English was substantially higher for every
models and RAG configurations. This manifests the English-centric
focus of most LLMs while showcasing the urgent need of dedicating
resources and effort to developing multilingual LLMs which could then
compete across all languages included in multilingual benchmarks such
as MedExpQA.

Fine-tuning results. They show that fine-tuning the LLMs on the
CasiMedicos dataset help to greatly increase performance for every
evaluation setting, language and LLM. BioMistral seems to obtain the
best overall scores but that is due to its high scores on the full gold
reference explanation setting (E). Thus, if we look at the rest of the
evaluation settings, Mistral, as it happened in the zero-shot scenario,
remains the best performing LLM on the MedExpQA benchmark.

The superior results of None with respect to RAG scores demon-
strate that fine-tuning makes any external knowledge automatically re-
trieved using RAG methods redundant. Finally, while scores for French,
Italian and Spanish remain lower than those obtained for English,
performance for those languages greatly benefit from fine-tuning, es-
pecially if we compare them with their zero-shot counterpart results.

Overall results. Overall, results demonstrate that the gold reference
explanations leveraged as knowledge for Medical QA help LLMs to
obtain almost perfect scores, especially when fine-tuning the models.
Fine-tuning particularly benefits EI, which obtains as good results as H
applied in zero-shot settings.

Our results allow us to draw several more conclusions. First, that de-
spite using state-of-the-art RAG methods for the medical domain [11],
their results are rather disappointing. Both in zero-shot when com-
pared with the results based on any kind of gold knowledge, and in
fine-tuning in which RAG methods score worse than not using any
additional knowledge.

Second, our MedExpQA benchmark suggests that overall perfor-
mance of even powerful LLMs such as Mistral still have a huge room
for improvement to reach scores comparable to those obtained when
gold knowledge is available.

We calculated a McNemar [40] test of statistical significance to
establish whether the RAG-7 and RAG-32 results were significantly



Artificial Intelligence In Medicine 155 (2024) 102938

9

I. Alonso et al.

Fig. 5. Performance of different models in a zero-shot setting with up to 0, 2, 4, 8, 16, and 32 retrieved snippets.

Table 8
Zero-shot results. E: Full gold explanation. EI: Gold Explanations of the Incorrect Options; H: Full gold explanation with Hidden explicit references to the correct/incorrect answer;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32; underline:
best result per type of knowledge; bold: best result overall.

PMC-LLaMA LLaMA2 Mistral BioMistral Avg.
(13B) (13B) (7B) (7B)

EN ES IT FR EN ES IT FR EN ES IT FR EN ES IT FR ALL

E 83.2 77.6 76.8 80.0 81.6 77.6 77.6 75.2 89.6 88.0 87.2 88.0 88.8 83.2 80.8 80.8 82.2
EI 60.0 42.4 43.2 46.4 44.0 31.2 39.2 44.8 59.2 53.6 52.0 52.8 50.4 44.0 46.4 49.6 47.4
H 78.4 63.2 72.0 70.4 68.8 64.8 63.2 65.6 82.4 75.2 77.6 78.4 80.8 74.4 69.6 74.4 72.4

None 45.6 36.8 33.6 30.4 34.4 18.4 12.8 27.2 48.8 41.6 40.8 39.2 44.0 39.2 35.2 41.6 35.6
RAG-7 40.0 30.4 28.0 24.8 42.4 36.0* 30.4* 32.0 55.2 44.0 38.4 42.4 44.8 40.0 40.8 36.8 37.9
RAG-32 40.0 30.4 28.0 24.8 41.6 31.2* 32.8* 26.4 58.4* 41.6 41.6 42.4 54.4 37.6 31.2 39.2 37.6

Avg. 57.9 46.8 46.9 46.1 52.1 43.2 42.7 45.2 65.6 57.3 56.3 57.2 60.5 53.1 50.7 53.7 –

* Results that are statistically significant at 𝛼 = .05 wrt to their None baseline.

Table 9
Fine-tuning results. E: Full gold explanation. EI: Gold Explanations of the Incorrect Options; H: Full gold explanation with Hidden explicit references to the multiple choice options;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32; underline:
best result per type of knowledge; bold: best result overall.

PMC-LLaMA LLaMA2 Mistral BioMistral Avg.
(13B) (13B) (7B) (7B)

EN ES IT FR EN ES IT FR EN ES IT FR EN ES IT FR ALL

E 92.0 89.6 89.6 88.8 90.4 90.4 89.6 92.0 94.4 92.8 91.2 92.8 94.4 93.6 92.0 93.6 91.7
EI 69.6 67.2 67.2 68.0 73.6 70.4 66.4 70.4 81.6 78.4 75.2 76.8 73.6 72.0 71.2 71.2 72.1
H 82.4 76.0 80.0 82.4 83.2 85.6 84.0 81.6 88.0 84.8 88.8 88.0 83.2 82.4 86.4 84.8 83.9

None 58.4 48.8 49.6 53.6 57.6 50.4 53.6 54.4 68.0 63.2 56.8 66.4 61.6 58.4 56.8 65.6 57.7
RAG-7 56.8 35.2 44.8 38.4 60.8 56.8 48.8 51.2 69.6 59.2 56.8 64.8 64.8 57.6 61.6 59.2 55.4
RAG-32 56.8 35.2 44.8 38.4 60.8 52.0 51.2 49.6 75.2 55.2 52.0 60.0 65.6 57.6 55.2 60.8 54.4

Avg. 69.3 58.7 62.7 61.6 71.1 67.6 65.6 66.5 79.5 72.3 70.1 74.8 73.9 70.3 70.5 72.5 –

better than their respective None baselines. As it can be seen in Tables 8
and 9, only five zero-shot scores (out of 64) marked with an asterisk
in Table 8 are statistically significant at 𝛼 = .05. Finally, performance
for languages different to English is much lower for every model and
evaluation setting. This points out to an urgent necessity to invest in
the development and research of LLMs which may be optimized not
only for English, but for other world languages too. Obviously, the
evaluation of such LLMs would in turn require multilingual evaluation
benchmarks which may be deployed to provide a comprehensive and
realistic overview of their performance. We hope that contributing
MedExpQA may serve as encouragement to the AI and medical research
communities to generate more benchmarks of its kind for many of the
world languages.

7. Discussion

The results discussed in the previous section show that even when
performing fine-tuning with the full gold reference explanations LLMs
still remain several points below perfect scores. Furthermore, the statis-
tical analysis of the obtained results indicates that, despite differences
compared to the None models, the performance gains (when that is the
case) of models using RAG-7 or RAG-32 are, in 61 out 64 cases, not

statistically significant. In contrast, the statistical analysis found out
that the results using gold knowledge (E, EI, H) were all statistically
significant at 𝛼 = .05

Apart from the evaluation results, and in order to better under-
stand the dataset on which the MedExpQA is setup, we performed
several analysis regarding the quality and quantity of the explanations
provided by the CasiMedicos medical doctors.

Regarding the quality of the explanations, we found several exam-
ples such as the one depicted in Table 10. Instead of directly answering
the question, the medical doctor (psychiatry resident) writing the ex-
planation gives information that is not relevant to explain the correct
answer (marked in red). We hypothesize that such explanations, which
lack any relevant medical information, may have a negative impact on
the final LLMs performance.

It should be noted that, despite CasiMedicos being a high-quality
dataset written voluntarily by medical doctors, sometimes (i) their
explanations may not follow a repetitive formal structure and, (ii) they
are not always subjected to a second review by an auditor as it usually
happens in specialized textual books.

Regarding the quantity of the explanations, around 5% of the full
gold reference explanations in the CasiMedicos dataset do not contain
any explicit explanation regarding the correct answer. Sometimes the
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Table 10
Example of a gold full explanation (E) with irrelevant and not medical comments.
E Another simple question with an immediate answer, which offers no doubt. It describes a

patient worried about a non-existent physical defect, whose concern distresses him and
prevents him from leaving the house. As a psychiatry resident, I wish the MIR questions
in my specialty were a bit more thought-provoking and in-depth, although I know that
the seconds you will have saved by marking the fourth one directly are very valuable.

medical doctor explains the incorrect options, hoping that the reader
may indirectly reach the correct conclusion, or sometimes they are
cases such as the one discussed above.

In any case, while it is possible to filter out such examples, we
thought it useful to leave them with the aim of analyzing in the
future the performance of LLMs and RAG methods for these specific
cases. After all, we would like LLMs to be able to also generalize
in situations in which the knowledge is provided in a non-standard
structured manner, as it is the case in the large majority of the full
gold reference explanations provided in CasiMedicos.

We would like to give a final word on multilinguality. Results
have shown that performance for French, Italian and Spanish is worse
across the board and we believe that this topic has a lot of interesting
questions for future research. Are these results a consequence of the
pre-training of the LLMs? For the RAG experiments, how much, positive
or negative, influence has the fact that the extracted knowledge from
MedCorp is in English? Would it be better to prompt the model only
in English and then translate the answers into each of the target
languages, in what is usually known as a translate-test approach? We
believe that a benchmark such as MedExpQA would help to investi-
gate these research questions which may be crucial to develop robust
multilingual medical QA approaches.

8. Concluding remarks

In this paper we present MedExpQA, the first multilingual bench-
mark for Medical QA. As a new feature, our new benchmark also
includes gold reference explanations to justify why the correct answer is
correct and also to explain why the rest of the options are incorrect. The
high-quality gold explanations have been written by medical doctors
and they allow to test the LLMs when different types of gold knowledge
is available. Comprehensive experimentation has demonstrated that
automatic state-of-the-art RAG methods still have a long way to go
to get near the scores obtained by LLMs when fed with gold knowl-
edge. Furthermore, our benchmark has made explicit the lower overall
performance of LLMs for languages other than English for Medical QA.

We think that MedExpQA may contribute to the development of AI
tools to assist medical experts in their everyday activities by providing
a robust multilingual benchmark to evaluate LLMs in Medical QA.
Future work may involve evaluating LLMs not only regarding their
accuracy in predicting the correct answer, but also on the quality of
the explanations generated to justify such prediction. Of course, these
approaches may pose new evaluation challenges that have not been yet
contemplated in this work.
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Appendix A. Prompts

In this appendix, we provide the specific prompts used to interact
with the Large Language Models of this work.

Appendix B. Hyperparameters

In this appendix we list some of the hyperparameters used in this
work (see Table B.11).

Appendix C. Efficiency metrics

In this work we only use or apply the LLMs to establish our bench-
mark, be that in zero-shot or fine-tuning. As such, we do not perform
any modification in the way the LLMs work. Therefore, for efficiency
and architectural issues the original papers of Llama2, PMC-Llama,
Mistral and BioMistral could be inspected. Our contributions are fo-
cused on (i) establishing a multilingual benchmark for Medical QA, (ii)
experimenting with state-of-the-art RAG methods and (iii) providing
gold reference explanations as a form of ‘‘gold’’ RAG that can be used
to compare the LLMs with. Having said that, below we offer detailed
information about some efficiency metrics. All the metrics have been
calculated using a NVIDIA A100 Graphics Processing Unit (GPU).

• The total number of parameters updated through Low Rank Adap-
tation (LoRA) during Parameter-Efficient Fine-Tuning (PEFT) are
the reported in Table C.12.

• Table C.13 shows the number of samples per second processed
when using Mistral (7B) and LLaMA2 (13B) in a NVIDIA A100
GPU. The performance in the other two models, BioMistral (7B)
and PMC-LLaMA (13B) is the same.

• Table C.14 shows the time in minutes and hours when pro-
cessing data with Mistral (7B) and LLaMA2 (13B). The other two
models, BioMistral (7B) and PMC-LLaMA (13B), showcase the
same times.
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Fig. A.6. Prompt used for models in English.

Fig. A.7. Prompt used for models in Spanish.

Fig. A.8. Prompt used for models in Italian.

Fig. A.9. Prompt used for models in French.



Artificial Intelligence In Medicine 155 (2024) 102938

12

I. Alonso et al.

Fig. A.10. Prompts to remove explicit references to the multiple-choice options.

Table B.11
Hyperparameters used in the configuration of the experiments.

Hyperparameter Value

Optimizer adamw_torch_fused
Learning rate 0.00015
Weight decay 0.0
ADAM 𝜖 1e−7
Epochs 10
Train batch size 16
Evaluation batch size 8
Floating Point 16-bit precision training False
Brain Float 16-bit precision training True

Maximum #tokens in input

PMCLLaMA 2048
LLaMA2 4096
Mistral 8000
BioMistral 8000

Maximum #tokens in generation

PMCLLaMA 2048
LLaMA2 4146
Mistral 8050
BioMistral 8050

Low-Rank Adaptation (LoRA)

R parameter 8
LoRA 𝛼 16
LoRA Dropout 0.05

Table C.12
Trainable parameters: Number of parameter in training using the LoRA model; All
parameters: total of parameters used in the LoRA model; Trainable %: number of
trainable parameters of the total number of parameters in the LoRA model.

7B parameter models

Trainable parameters All parameters Trainable %

Mistral and BioMistral 20,971,520 3,773,042,688 0.555825

13B parameter models

Trainable parameters All parameters Trainable %

LLaMA2 31,293,440 6,703,272,960 0.466838
PMC-LLaMa 31,293,440 6,703,283,200 0.466838

Table C.13
Samples processed by second in a NIVIDIA A100 GPU. E: Full gold explanation. H:
Full gold explanation with Hidden explicit references to the correct/incorrect answer;
None: model without any additional external knowledge; RAG-7: Retrieval Augmented
Generation with k = 7; RAG-32: Retrieval Augmented Generation with k = 32.

Samples per second Train Inference

7B 13B 7B 13B

E 1.981 1.270 7.681 4.757
H 1.998 1.282 7.676 4.76

None 3.248 2.116 11.375 6.956
RAG-7 1.031 0.629 3.637 2.081
RAG-32 0.191 0.281 0.744 1.013

Table C.14
Time in minutes (m) and hours (h) when processing data in a NIVIDIA A100 GPU.
E: Full gold explanation. H: Full gold explanation with Hidden explicit references to
the correct/incorrect answer; None: model without any additional external knowledge;
RAG-7: Retrieval Augmented Generation with k = 7; RAG-32: Retrieval Augmented
Generation with k = 32.

Time for training 7B 13B

E 1 h 4 m 2 h 1 m
H 1 h 9 m 2 h 9 m

None 47 m 1 h 39 m
RAG-7 1 h 42 m 3 h 2 m
RAG-32 7 h 34 m 5 h 31 m
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B. APPENDIX

Improving faithfulness in Table-to-Text Generation

B.1 Training Procedure

All experiments were conducted on a machine equipped with an NVIDIA TITAN
Xp GPU with 12GB of memory. The average training time for models based on
Table2Logic was 19 hours, while for the Logic2Text models, the average was 10
hours. Both model types, Table2Logic and Logic2Text, contain a similar number
of parameters, approximately 117 million.

B.2 Model hyper-parameters

We maintain the same hyper-parameters for Logic2Text as used by Chen et al.
(2020d) and direct readers to their paper for further details. For the Table2Logic
model in T lT , which is based on Valuenet from Brunner and Stockinger (2021),
we made modifications to the grammar, incorporated additional input data, and
adjusted the code to fit our specific use case. The hyper-parameters largely fol-
low those outlined in the original paper, with changes to the base learning rate,
beam size, number of epochs, and gradient clipping. Below is the list of hyper-
parameters used for Table2Logic in the T lTmodel:
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B IMPROVING FAITHFULNESS IN TABLE-TO-TEXT GENERATION

Random seed: 90 Attention vector size: 300
Maximum sequence lengthy: 512 Grammar type embedding size: 128
Batch size: 8 Grammar node embedding size: 128
Epochs: 50 Column node embedding size: 300
Base learning rate: 5 ∗ 10−5 Index node embedding size: 300
Connection learning rate: 1 ∗ 10−4 Readout: ’identity’
Transformer learning rate: 2 ∗ 10−5 Column attention: ’affine’
Scheduler gamma: 0.5 Dropout rate: 0.3
ADAM maximum gradient norm: 1.0 Largest index for I nodes: 20
Gradient clipping: 0.1 Include OOV token: True
Loss epoch threshold: 50 Beam size: 2048
Sketch loss weight: 1.0 Max decoding steps: 50
Word embedding size: 300 False Candidate Rejection: True
Size of LSTM hidden states: 300
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B.3 LOGICAL FORM GRAMMAR

B.3 Logical Form grammar

Stat ::= only View | and Stat Stat | greater Obj Obj | less Obj Obj | eq Obj Obj |
str_eq Obj Obj | not_eq Obj Obj | not_str_eq Obj Obj | round_eq Obj Obj |

all_eq View C Obj | all_str_eq View C Obj | all_not_eq View C Obj |
all_str_not_eq View C Obj | all_less View C Obj | all_less_eq View C Obj |

all_greater View C Obj | all_greater_eq View C Obj | most_eq View C Obj |
most_str_eq View C Obj | most_not_eq View C Obj |
most_str_not_eq View C Obj | most_less View C Obj | most_less_eq View C Obj |

most_greater View C Obj | most_greater_eq View C Obj
View ::= all_rows | filter_eq View C Obj | filter_str_eq View C Obj |

filter_not_eq View C Obj | filter_str_not_eq View C Obj |
filter_less View C Obj | filter_greater View C Obj | filter_greater_eq View C Obj |
filter_less_eq View C Obj | filter_all View C

N ::= count View | avg View C | sum View C | max View C | min View C |
nth_max View C I | nth_min View C I

Row ::= argmax View C | argmin View C | nth_argmax View C I | nth_argmin View C I
Obj ::= str_hop Row C | num_hop Row C | str_hop_first View C |

num_hop_first View C | diff Obj Obj | N | V
C ::= column
I ::= index

V ::= value

Table 1: Logical Form Grammar. All disambiguation keywords added to the original logical form grammar are
highlighted in green. Following IRNet’s and Valuenet’s notation, the tokens to the left of the ::= represent all node
types in a logical form. Italic keywords represent the rules each node can represent along with references to columns,
indexes or values for nodes C, I and V. The pipe separates the different rules within a node type.

B Table2Logic training002

In the same fashion as (?), we perform two gen-003

eration iterations. In a first decoding iteration, a004

sketch logical form is generated consisting on only005

grammar related nodes. This sketch contains place-006

holder nodes representing the Value, Column and007

Index nodes that will be generated in a second de-008

coding iteration.009

We follow teacher-based training to calculate010

one loss for each decoding iteration. In the first011

iteration the loss is calculated by accumulating012

the cross entropy loss for each generated gram-013

mar node given the previous gold reference nodes.014

This grammar node based sketch is then used to015

calculate the cross entropy loss of generating Value,016

Column and Index nodes. The sum of both losses017

is then used to update the weights of the network.018

We use different learning rates to update the en-019

coder, decoder and rest of the network connection020

parameters.021

C Model hyperparameters 022

While we change the input values fed to the three 023

variations of Logic2Text in T`T, the hyperparam- 024

eters of this model are kept the same as ?. We refer 025

the reader to the paper. 026

Regarding the Table2Logic model in T`T, 027

which is based on ?, we changed the grammar and 028

added additional input, such as different combi- 029

nations, as well as changing the code accordingly. 030

We use the same hyperparameters as in the paper, 031

except for a small exploration of the base learn- 032

ing rate, beam size (see additional details about 033

beam size below), epochs and gradient clipping. 034

This is the whole list of hyperparameters used by 035

Table2Logic: 036

• Random seed: 90 037

• Maximum sequence lengthy: 512 038

• Batch size: 8 039

• Epochs: 50 040

• Base learning rate: 5 ⇤ 10�5 041

2

B.1 Figure – Logical form grammar, after resolving the ambiguity issues in the
original definition (Chen et al., 2020d). We adhere to the same notation used in
IRNet and Valuenet. Non-terminals (node types in the graph) are represented by
the tokens to the left of ::=, while the possible rules for each node are shown
in italics, with pipes (|) separating the different rules. The rules added to the
original grammar to address ambiguity issues are marked in green.

B.4 Logic2Text errors
This section provides examples of error cases where the logic-to-text stage of
the pipeline failed to generate accurate sentences from a gold logical form (LF).
For each error type, we present one example, including the table, caption, gold
logical form, and the generated description. For more detailed information, refer
to Section 3.3.6.
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B.4.1 Comparative arithmetic

Caption: fil world luge championships 1961

Table:

rank nation gold silver bronze total
1 austria 0 0 3 3
2 italy 1 1 0 2
3 west germany 0 2 0 2
4 poland 1 0 0 1
5 switzerland 1 0 0 1

Logical Form:
and
├── only
│   └── filter_greater
│       ├── 0
│       ├── all_rows
│       └── bronze
└── str_eq
    ├── austria
    └── str_hop_first
        ├── filter_greater
        │   ├── 0
        │   ├── all_rows
        │   └── bronze
        └── nation

T lT sentence: austria was the only country to win 0 bronze medals at the fil world luge
championships .

Gold sentence: austria was the only country to have bronze medals in the luge
championship in 1961 .
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B.4 LOGIC2TEXT ERRORS

B.4.2 LF omission

Caption: geography of moldova

Table:
land formation area , km square of which currently forests , km square % forests habitat type
northern moldavian hills 4630 476 10.3 % forest steppe
dniester - rāut ridge 2480 363 14.6 % forest steppe
middle prut valley 2930 312 10.6 % forest steppe
bălţi steppe 1920 51 2.7 % steppe
ciuluc - soloneţ hills 1690 169 10.0 % forest steppe
corneşti hills ( codru ) 4740 1300 27.5 % forest
lower dniester hills 3040 371 12.2 % forest steppe
lower prut valley 1810 144 8.0 % forest steppe
tigheci hills 3550 533 15.0 % forest steppe
bugeac plain 3210 195 6.1 % steppe
part of podolian plateau 1920 175 9.1 % forest steppe
part of eurasian steppe 1920 140 7.3 % steppe

Logical Form:
eq
├── 8
└── count
    └── filter_str_eq
        ├── all_rows
        ├── forest steppe
        └── habitat type

T lT sentence: there are 8 habitats that can be found in moldova .

Gold sentence: 8 land formations are classified with a habitat type of forest steppe .
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B.4.3 Verbalization

Caption: seattle supersonics all - time roster

Table:
player nationality jersey number ( s ) position years from
craig ehlo united states 3 sg 1996 - 1997 washington state
dale ellis united states 3 sg / sf 1986 - 1991 1997 - 1999 tennessee
pervis ellison united states 29 c 2000 louisville
francisco elson netherlands 16 c 2008 california
reggie evans united states 34 , 30 pf 2002 - 2006 iowa
patrick ewing united states 33 center 2000 - 2001 georgetown

Logical Form:
greater
├── num_hop_first
│   ├── filter_str_eq
│   │   ├── all_rows
│   │   ├── francisco elson
│   │   └── player
│   └── years
└── num_hop_first
    ├── filter_str_eq
    │   ├── all_rows
    │   ├── pervis ellison
    │   └── player
    └── years

T lT sentence: foulisco elson played for the supersonics after pervis ellison .

Gold sentence: francisco elson played 8 years later thanpervis ellison .
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B.5 EXAMPLES OF FAITHFUL TLT SENTENCES WHERE LF IS DIFFERENT TO GOLD

B.5 Examples of faithful TlT sentences where LF is
different to gold

This section presents examples of automatic logical forms (LFs) from T lT that
produced accurate sentences during manual evaluation, despite differing from
their corresponding gold LF references. Each example provides additional details
beyond what is shown in Table 3.5.
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B.5.1 Similar structure, semantically equivalent

Caption: list of appalachian regional commission counties

Table:
county population unemployment rate market income per capita poverty rate status
allegany 49927 5.8 % 16850 15.5 % - risk
broome 200536 5.0 % 24199 12.8 % transitional
cattaraugus 83955 5.5 % 21285 13.7 % transitional
chautauqua 136409 4.9 % 19622 13.8 % transitional
chemung 91070 5.1 % 22513 13.0 % transitional
chenango 51401 5.5 % 20896 14.4 % transitional
cortland 48599 5.7 % 21134 15.5 % transitional
delaware 48055 4.9 % 21160 12.9 % transitional
otsego 61676 4.9 % 21819 14.9 % transitional
schoharie 31582 6.0 % 23145 11.4 % transitional
schuyler 19224 5.4 % 21042 11.8 % transitional
steuben 98726 5.6 % 28065 13.2 % transitional
tioga 51784 4.8 % 24885 8.4 % transitional

T lT Logical Form:
str_eq
├── schoharie
└── str_hop
    ├── county
    └── nth_argmax
        ├── 1
        ├── all_rows
        └── unemployment rate

Gold Logical Form:
str_eq
├── schoharie
└── str_hop
    ├── argmax
    │   ├── all_rows
    │   └── unemployment rate
    └── county

T lT sentence: in the list of appalachian regional commission counties , schoharie has
the highest unemployment rate .

Human sentence: the appalachian county that has the highest unemployment rate is
schoharie .
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B.5.2 Similar structure, semantically different

Caption: dick rathmann

Table:

year qual rank finish laps
1950 130.928 17 32 25
1956 144.471 6 5 200
1957 140.780 withdrew withdrew withdrew
1958 145.974 1 27 0
1959 144.248 5 20 150
1960 145.543 6 31 42
1961 146.033 8 13 164
1962 147.161 13 24 51
1963 149.130 14 10 200
1964 151.860 17 7 197

T lT Logical Form:
less
├── num_hop_first
│   ├── filter_str_eq
│   │   ├── 1956
│   │   ├── all_rows
│   │   └── year
│   └── rank
└── num_hop_first
    ├── filter_str_eq
    │   ├── 1959
    │   ├── all_rows
    │   └── year
    └── laps

Gold Logical Form:
greater
├── num_hop_first
│   ├── filter_str_eq
│   │   ├── 1956
│   │   ├── all_rows
│   │   └── year
│   └── laps
└── num_hop_first
    ├── filter_str_eq
    │   ├── 1959
    │   ├── all_rows
    │   └── year
    └── laps

T lT sentence: dick rathmann had a lower rank in 1956 than he did in 1959 .

Human sentence: dick rathmann completed more laps in the indianapolis 500 in 1956
than in 1959 .
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B.5.3 Different structure, semantically different

Caption: 2005 houston astros season

Table:

date winning team score winning pitcher losing pitcher attendance location
may 20 texas 7 - 3 kenny rogers brandon backe 38109 arlington
may 21 texas 18 - 3 chris young ezequiel astacio 35781 arlington
may 22 texas 2 - 0 chan ho park roy oswalt 40583 arlington
june 24 houston 5 - 2 roy oswalt ricardo rodriguez 36199 houston
june 25 texas 6 - 5 chris young brandon backe 41868 houston

T lT Logical Form:
most_str_eq
├── all_rows
├── arlington
└── location

Gold Logical Form:
str_eq
├── arlington
└── str_hop
    ├── argmin
    │   ├── all_rows
    │   └── date
    └── location

T lT sentence: most of the games of the 2005 houston astros ’ season were played in the
location of arlington .

Human sentence: arlington was the first location used in the 2005 houston astros season
.
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B.5.4 Simpler, more informative semantic

Caption: 2006 asp world tour

Table:
location country event winner runner - up
gold coast australia roxy pro gold coast melanie redman - carr ( aus ) layne beachley ( aus )
tavarua fiji roxy pro fiji melanie redman - carr ( aus ) layne beachley ( aus )
teahupoo , tahiti french polynesia billabong pro tahiti women melanie redman - carr ( aus ) chelsea georgeson ( aus )
itacarã brazil billabong girls pro layne beachley ( aus ) jessi miley - dyer ( aus )
hossegor france rip curl pro mademoiselle chelsea georgeson ( aus ) melanie redman - carr ( aus )
manly beach australia havaianas beachley classic stephanie gilmore ( aus ) layne beachley ( aus )
sunset beach , hawaii united states roxy pro melanie bartels ( haw ) stephanie gilmore ( aus )
honolua bay , hawaii united states billabong pro jessi miley - dyer ( aus ) keala kennelly ( haw )

T lT Logical Form:
eq
├── 7
└── count
    └── filter_str_eq
        ├── all_rows
        ├── aus
        └── winner

Gold Logical Form:
eq
├── 7
└── count
    └── filter_str_eq
        ├── all_rows
        ├── aus
        └── runner - up

T lT sentence: aus won 7 events in the 2006 asp world tour .

Human sentence: seven of the individuals that were the runner up were from aus .
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C. APPENDIX

Pixel-based Table-To-Text Generation

C.1 Table Size Distribution in ToTTo

We measured table size based on the total number of pixels in the rendered ta-
ble images. The size distribution was calculated and tables were grouped into
20 buckets, with each bucket representing a range of table sizes increasing loga-
rithmically. Figure C.1 presents the distribution of ToTTo examples across these
buckets for the development set. The performance of generated descriptions within
each size group is discussed in Section 4.3.2, and results are displayed in Fig-
ure 4.5.

C.2 Table-to-Text Generation Settings

Figure C.2 demonstrates how the input to PixT3 varies depending on the gener-
ation setting. These settings include tightly controlled (where only highlighted
cells are provided, without the table), loosely controlled (where both the table and
highlighted cells are provided), and open-ended (where the entire table is provided
without any highlighted content).
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C.1 Figure – Distribution of ToTTo examples (development set) by table size
(shown on a logarithmic scale).

C.3 Image Truncation and Down-scaling

We analysed how downscaling affects model performance, balancing it against
the potential drawbacks of truncation. To do this, we trained PixT3 models on
different versions of ToTTo, each with varying downscaling factors γ: 0.87, 0.58,
0.39, 0.26, and 0.00. Note that γ = 0.00 means no truncation occurred, and only
downscaling was applied. Based on the results in Table C.1, a combination of
truncation and downscaling yielded the best results, with extreme settings (either
no truncation or excessive truncation) proving suboptimal. The optimal downscal-
ing factor was found to be 0.39.
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C.4 INTERMEDIATE TRAINING

TControl

LControl OpenE

Reference
On October 13, 1997, Canal de las Estrellas started broadcasting Huracán on weekdays.

C.2 Figure – Examples of PixT3 input images (and reference) across three gen-
eration settings: tightly controlled (TControl), loosely controlled (LControl), and
open-ended (OpenE).

C.4 Intermediate Training

Synthetic Dataset Generation In this section, we provide additional details on
how synthetic tables were generated for intermediate training. To ensure that the
synthetic tables were similar to those in ToTTo, we first analyzed the probability
distributions of columns, rows, column spans, and row spans from the ToTTo
training set, minimizing the risk of overfitting and contamination. We observed
that the number of columns (up to 20) remained fairly constant across tables, so
we simplified the generation process by aggregating row numbers across columns
and using a single probability distribution for rows. The number of columns and
rows was capped at 20 and 75, respectively. For the content within the cells,
we randomly generated combinations of digits (1-5) and characters (A-Z, a-z),
yielding a total of approximately 776 million possible unique cell values.

In total, we generated 120,000 tables, each paired with a target pseudo-HTML
description. On average, these descriptions were 121 tokens long, with the longest
containing 877 tokens. During our experiments, we found that text length was
influenced mainly by the number of columns and rows in the table, with larger ta-
bles leading to longer target sequences. The target sequence follows a hierarchical
structure, with each highlighted cell acting as a container that includes all related
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PPPPPPPPPEpoch
γ

0.00 0.26 0.39 0.57 0.87

16 28.71 29.13 29.47 29.58 27.47
17 28.99 29.53 29.99 29.70 27.69
18 29.67 30.04 30.55 30.21 28.13
19 29.98 30.04 30.63 30.54 28.33
20 29.83 30.21 30.68 30.53 29.39

C.1 Table – Evaluation results (BLEU scores) for the PixT3 model in the tightly
controlled setting across different γ downscaling factors. Results are shown for
the last five epochs on the ToTTo training set.

C.3 Figure – Example of a synthetically generated table with a masked cell.
Filled cell values indicate their position within the table.

cells from the same rows and columns.

Alternative Objectives We conducted experiments to identify the most effec-
tive self-supervised objective for structure learning. In addition to the primary
objective described in Section 4.2.4, we tested a masking objective. For this, we
generated tables filled with text indicating the position of each cell, then masked
random cells and trained the model to predict the missing values (see Figure C.3
for an example). While this approach resulted in faster training, it led to worse per-
formance compared to PixT3. We believe this is because the model only needed
to consider nearby cells to predict the masked value, rather than fully understand-
ing the table’s structure. We also tried combining the masking objective with
the structure learning objective from Section 4.2.4, but the performance was still
below that of PixT3.
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C.5 ADDITIONAL RESULTS AND EXAMPLES

Dev Set (All) Test Set (Non) Test Set (Over) Test Set (All)

Model BLEURT BLEURT BLEURT BLEURT

T5-base 0.233 0.106 0.354 0.230
T5-3B 0.228 0.104 0.344 0.224
Lattice 0.226 0.103 0.348 0.226
CoNT 0.240 0.116 0.364 0.240T

C
on

tr
ol

PixT3 0.178 0.044 0.312 0.178

T5-base −0.298 −0.395 −0.191 -0.293
T5-3B −0.309 −0.416 −0.194 -0.305
Lattice −0.287 −0.382 −0.195 -0.288
CoNT −0.293 −0.387 −0.190 -0.289L

C
on

tr
ol

PixT3 0.169 0.047 0.287 0.167

T5-base −0.371 −0.458 −0.278 -0.368
T5-3B −0.385 −0.456 −0.301 -0.378
Lattice −0.377 −0.451 −0.302 -0.377
CoNT −0.370 −0.452 −0.281 -0.366O

pe
nE

PixT3 −0.332 −0.414 −0.258 −0.336

C.2 Table – BLEURT evaluation results for T5, PixT3, Lattice, and CoNT
across three generation settings: tightly controlled (TControl), loosely controlled
(LControl), and open-ended (OpenE). The T5 results in the TControl setting are
sourced from Kale and Rastogi (2020), and the CoNT results are from An et al.
(2022). This table provides additional information to complement the results
presented in Table 4.1.

C.5 Additional Results and Examples

Alongside BLEU and PARENT scores reported in Tables 4.1 and 4.2, we also
include BLEURT results in Table C.2 and Table C.3. Furthermore, Figure C.4
provides example outputs on the Logic2Text dataset in a zero-shot setting. In
the tightly controlled (TControl) setting, CoNT struggles to generate a coherent
sentence, while PixT3 produces a faithful but somewhat generic description. In
the loosely controlled (LControl) setting, both models have access to the entire
table, yet both produce incorrect statements, likely due to the zero-shot nature
of the task. In the open-ended (OpenE) setting, PixT3 generates a coherent and
accurate sentence, while CoNT introduces an error by mentioning “(+5)” instead
of “(-5),” likely due to performance degradation when given the entire table.
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BLEURT

Model TControl LControl OpenE

LLaVA −1.230 −1.189 −1.184
T5-base −1.086 −1.147 −1.237
T5-3B −1.079 −1.167 −1.196
Lattice −1.060 −1.147 −1.231
CoNT −1.103 −1.159 −1.231
PixT3 −1.104 −1.073 −1.213

C.3 Table – Automatic evaluation results on the Logic2Text dataset across three
generation settings: tightly controlled (TControl), loosely controlled (LControl),
and open-ended (OpenE). All models, except LLAVA, were fine-tuned on ToTTo
and then tested on Logic2Text. This table provides additional metrics to comple-
ment the results shown in Table 4.2.

C.6 LLaVA promts

As part of the zero-shot experiments outlined in Section 4.3.1, we compared our
models with LLaVA-1.5 (Liu et al., 2023c), a large pretrained multimodal model
with 13 billion parameters. The following prompts were used for each generation
setting:

TControl "Here are some descriptions based on other highlights of other tables
’chilawathurai had the 2nd lowest population density among main towns in the
mannar district .’, ’zhou mi only played in one bwf super series masters finals
tournament .’, ’tobey maguire appeared in vanity fair later than mike piazza in
2003 .’. Now write a short description based on the following highlighted cells
extracted form a table."

LControl "Here are some descriptions based on the highlights of other tables
not present in the input: ’chilawathurai had the 2nd lowest population density
among main towns in the mannar district .’, ’zhou mi only played in one bwf super
series masters finals tournament .’, ’tobey maguire appeared in vanity fair later
than mike piazza in 2003 .’. Now write a short description based on the highlighted
cells in this table following the same style as the example descriptions."
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C.7 HUMAN EVALUATION GUIDELINES

• Reference: Jim Colbert has the second best number
of strokes to par.

• CoNT (TControl): Jim Colbert led the 1973 U.S.
open (golf course) with a score of to par.

• PixT3 (TControl): Jim Colbert took part in the
1973 U.S. open (golf) tournament.

• CoNT (LControl): At the 1973 U.S. open (golf),
Jim Colbert shot a record of 267 (+1) and finished
four strokes ahead of runner-up Lee Janzen.

• PixT3 (LControl): Jim Colbert had a score of 142.

• CoNT (OpenE): Gary Player scored 137 (+5) and
finished five strokes ahead of runner-up Jim Colbert.

• PixT3 (OpenE): Gary Player won the 1973 U.S.
Open (golf) with a score of 137.

C.4 Figure – Logic2Text table and model output across three generation set-
tings: tightly controlled (TControl), loosely controlled (LControl), and open-
ended (OpenE).

OpenE "Here are some descriptions from other tables not present in the input:
’chilawathurai had the 2nd lowest population density among main towns in the
mannar district .’, ’zhou mi only played in one bwf super series masters finals
tournament .’, ’tobey maguire appeared in vanity fair later than mike piazza in
2003 .’. Now write a short description stating something from this table following
the same style as the example descriptions."

C.7 Human Evaluation Guidelines

We provided detailed instructions to crowdworkers participating in our human
evaluation study. Our participants were native English speakers from the UK and
the USA, with an equal gender split (50% male, 50% female).
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Thank you for taking part in our experiment! You will be presented with a ta-
ble and a computer-generated description of its content. Your task is to determine
whether each description is "True" or "False" based on the information provided
in the table and/or its title and subtitle (you will see examples later-on). No expert
knowledge is required to perform this task. You should evaluate the descriptions
given the information presented in the table, without taking any other information
into account (e.g., based on your own knowledge or the web).

Here are some guidelines to help you with your evaluation:
Acronyms: tables often have acronyms which the descriptions might spell out.

For example, if the table mentions "TD" and the description correctly spells it out
as "touch down," you should not consider this "False" (although the description
might be false for other reasons).

Implicit information: the description might mention information that can be
inferred but is not explicitly spelled-out in the table. For example, it could mention
"steam engines" when the table lists theirs names without explicitly talking about
steam engines. In this case, the description should not be considered "False".

- You should evaluate each description independently.
- If the description does not make sense and is impossible to evaluate (usually

when summarizing very large tables), you should consider it as "False".
We suggest starting by reading the description and then referring to the table

to verify if it aligns with its claims.
This data elicitation study is performed by researchers at [REDACTED]. If

you have any questions, feel free to contact [REDACTED]. Participation in this
research is voluntary. You have the right to withdraw from the experiment at any
time. The collected data will be used for research purposes only. We will not col-
lect any personal information. Your responses will be linked to your anonymous
Prolific ID for the exclusive purpose of conducting our experiment.

C.8 PixT3 Fine-tuning Hyper-parameters

PixT3 models for all three generation settings (TControl, LControl, OpenE) were
fine-tuned using the same set of hyperparameters. To prevent overfitting, we ap-
plied early stopping based on the BLEU score computed on the validation set
every 250 steps. Table C.4 outlines the specific hyperparameters used in PixT3,
with all other parameters set to the default values from Pix2Struct (Lee et al.,
2023).
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C.8 PIXT3 FINE-TUNING HYPER-PARAMETERS

Hyperparameter Value

Optimizer AdamW
Learning rate 0.0001
Warm-up steps 1000
Max. input patches 2048
Shuffle train data False
Epochs 30
Train batch size 8
Gradient accum. steps 32
Mixed precision fp16
Evaluation batch size 32
Eval freq. steps 250
Inf. beam search 8 beams

C.4 Table – Hyperparameters used in PixT3.
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D. APPENDIX

Multimodal Table Understanding

D.1 Table Understanding Pre-Training Objectives
In Table Understanding, a variety of pre-training objectives have been proposed
to equip models with the ability to comprehend and manipulate tables. These ob-
jectives span a range of tasks, from fundamental operations like masked language
modeling and entity linking to more complex tasks such as schema augmenta-
tion and table summarization. Each task is designed to target specific aspects of
table-based reasoning, enhancing the model’s capabilities in relational inference,
data population, semantic parsing, and more. By applying these objectives dur-
ing pre-training, recent models have demonstrated significant improvements in
table-specific tasks. The following section details key pre-training objectives used
across various state-of-the-art models in table understanding:

• Masked Language Modeling: This objective requires the model to pre-
dict masked tokens or entire cells within tables or associated text, helping
it to understand contextual relationships between cells, columns, and sur-
rounding text. Applications of this objective include: TaPas ((Herzig et al.,
2020)), TaBERT ((Yin et al., 2020)), TUTA ((Wang et al., 2021)), OmniTab
((Jiang et al., 2022)), TURL ((Deng et al., 2020)), Table-GPT ((Li et al.,
2023b)).

• SQL Executor Model: The model is trained to execute SQL operations
directly over tables, simulating a SQL execution engine. This task enables
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models to interpret and process structured queries, improving their com-
prehension of table semantics and logical structure. This technique was
introduced in TAPEX ((Liu et al., 2022)).

• Table Entailment: By classifying statements as either supported or refuted
based on table content, this objective builds a model’s inferencing capabili-
ties for truth-value assessments in tabular data. Implemented in (Eisensch-
los et al., 2020) and TableLlama ((Zhang et al., 2024a)).

• Masked Column Prediction: This task involves predicting the names and
data types of masked columns, which helps the model develop schema un-
derstanding and familiarity with common data type conventions. Used in
TaBERT ((Yin et al., 2020)).

• Entity Linking: Given a selected cell and a set of entities, that is, infor-
mation about a certain something or someone, make the model choose the
entity that corresponds to the cell. Used in TURL ((Deng et al., 2020)) and
TableLlama ((Zhang et al., 2024a)).

• Relation Extraction: Given two pair of column names and a set of possible
relations (i.e. ’goverment.politician.party’) the model needs to choose the
correct relation between the columns. Explored in TURL ((Deng et al.,
2020)) and TableLlama ((Zhang et al., 2024a)).

• Row Population: This objective requires the model to arrange a set of
pre-selected cell values within a designated column. Introduced in (Zhang
and Balog, 2017) and used by TURL ((Deng et al., 2020)) and TableLlama
((Zhang et al., 2024a)).

• Schema Augmentation: The model rearranges shuffled column headers to
align with a coherent schema, which builds the model’s ability to recognize
correct schema configurations. Introduced in (Zhang and Balog, 2017).

• Cell Value Recovery: This objective involves using an extra two layer neu-
ral network to encode the value of a cell into an embedding and then making
the model to recover the value of the cell based on the embedding and the
rest of the table data. This technique is used in TaBERT ((Yin et al., 2020)).

• Cell Type Classification: Given a predefined cell type taxonomy, the model
needs to identify the structural types of cells in the table. Applied in TUTA
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((Wang et al., 2021)), HGT ((Jin et al., 2024)), and TabPrompt ((Jin et al.,
2023)).

• Table Type Classification: This objective involves categorizing tables based
on predefined taxonomies ((Crestan and Pantel, 2011)), enhancing the model’s
comprehension of different table structures and purposes. Found in TUTA
((Wang et al., 2021)), HGT ((Jin et al., 2024)), and TabPrompt ((Jin et al.,
2023)).

• Table Row Classification: In this task, the model needs to clasify whether a
given header is a header row or a data row, supporting the understanding of
hierarchical structures within tables. Deployed in HGT ((Jin et al., 2024)).

• Table Column Classification: Find the semantic type of a column, from a
given list of choices, these choices can either follow a given taxonomy or
directly be a estanadrised Wikipedia type. Implemented in TURL ((Deng
et al., 2020)), Table-GPT ((Li et al., 2023b)), and TableLlama ((Zhang et al.,
2024a)).

• Cell-level Cloze: The model predicts masked cell values from multiple-
choice options to imrpove its contextual understanding of cell-level infor-
mation. Applied in TUTA ((Wang et al., 2021)).

• Table Context Retrieval: This objective requires the model to retrieve rel-
evant table metadata, such as titles and descriptions, from provided text
snippets, improving model’s context retrieval and table comprehension ca-
pabilities. Found in TUTA ((Wang et al., 2021)).

• TableQA: Given a table and a question in natural language, the model
must answer based on table content. Works using this objective include
WikiTableQuestions ((Pasupat and Liang, 2015)), OmniTab ((Jiang et al.,
2022)), Table-GPT ((Li et al., 2023b)), and TableLlama ((Zhang et al.,
2024a)).

• Table Cell Matching: The model gets the encoding of table cells and a list
of shuffled cell text contents. The model needs to pair each cell encoding
with its corresponding text in the list. Applied in HGT ((Jin et al., 2024)).

• Table Context Generation: Given a table cell, the model needs to generate
the context around that table. Found in HGT ((Jin et al., 2024)).
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• Masked Entity Recovery: Recover masked cells based on surrounding
cells and table meta-data. Used in TURL ((Deng et al., 2020)).

• Highlighted Cells QA: This task involves answering questions based on
highlighted table cells, aligning question-answering with specific data fields.
Implemented in FeTaQA ((Nan et al., 2022)) and used in TableLlama ((Zhang
et al., 2024a)).

• Hierarchical Table QA: Models learn to answer questions over tables with
hierarchical structures, such as multi-column or multi-row spans. Used in
HiTab ((Cheng et al., 2022)) and TableLlama ((Zhang et al., 2024a)).

• Table Grounded Dialogue Generation: Generates conversational responses
grounded in table content, supporting table-centric dialog tasks. Used in
TableLlama ((Zhang et al., 2024a)).

• Hybrid Table Context QA: Given a table and a set of contextual texts
linked to the table’s entities, the model needs answer a multi-hop ques-
tion using information from both sources. Introduced by HybridQA ((Chen
et al., 2020c)) and applied in TableLlama ((Zhang et al., 2024a)).

• Highlighted Cells Description: In this task the model needs to generate a
description based on a Wikipedia table and a set of highlighted cell, making
the model contextualize specific data fields. Introduced in ToTTo ((Parikh
et al., 2020)) and applied in TableLlama ((Zhang et al., 2024a)).

• Missing-value Identification: In this task the model needs to identify the
position of missing cells within tables. Implemented in Table-GPT ((Li
et al., 2023b)).

• Column-finding: Identify the column name of a specific value that appears
only once in a given table. Used in Table-GPT ((Li et al., 2023b)).

• Row-to-row Transform: Given a table and a transformed version without
a random missing value (could be transposed or columns merged) make the
model infer the transformation and fill in the missing value. Applied in
Table-GPT ((Li et al., 2023b)).

• Entity Matching: In this objective models need to match rows from differ-
ent tables that refer to the same real-world entity. Found in Table-GPT ((Li
et al., 2023b)).
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• Schema Matching: Get different rows of the same table, paraphrase the
column name of one of them, shuffle, and make the model match them.
Used in Table-GPT ((Li et al., 2023b)).

• Error Detection: Detect data values in a table that is a likely error from
misspelling. Implemented in Table-GPT ((Li et al., 2023b)).

• List Extraction: The model reconstructs column separators in unformatted
table. Applied in Table-GPT ((Li et al., 2023b)).

• Head Value Matching: This objective requires models to pair column
headers with their corresponding data values. Found in Table-GPT ((Li
et al., 2023b)).

• Table Semantic Parsing: Transforms natural language questions into SQL
statements for a given table. Used in Table-GPT ((Li et al., 2023b)).

• Table Summarization: Generate natural language summaries of table con-
tent. Found in Table-GPT ((Li et al., 2023b)).

• Column Augmentation: Given a table with masked columns, requires the
model to generate them. Applied in Table-GPT ((Li et al., 2023b)).

• Row Augmentation: Given a table with masked rows, requires the model
to generate them. Used in Table-GPT ((Li et al., 2023b)).

• Row/Column Swapping: Prompts the model to execute swap operations
on rows or columns and generate the resulting modified table structure. Im-
plemented in Table-GPT ((Li et al., 2023b)).

• Row/Column Filtering: Requieres the model to remove columns or rows
at a certain index. Applied in Table-GPT ((Li et al., 2023b)).

• Row/Column Sorting: Sort rows or columns according to specific criteria.
Found in Table-GPT ((Li et al., 2023b)).

• Table Numerical Reasoning: Given a table and a mathematical question,
the model must answer using mathematical reasoning over table values.
Found in TABMWP ((Lu et al., 2023a)), TAT-QA ((Zhu et al., 2021)), and
MMTab ((Zheng et al., 2024)). Works like (Liu et al., 2023a) also apply this
objective to visually represented tables in MatCha.
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• Financial QA: The model answers finance-related questions, often with
complex financial vocabulary. Found in FINQA ((Chen et al., 2021)).

D.2 Table Retrieval Errors
Distribution of table retrieval errors across seed datasets.

Dataset Total Errors NO (%) Sim (%) NTF (%) Other (%)
TURL 138413 (23.9%) 3.0% 19.4% 0.9% 2.7%
ToTTo 16282 (12.0%) 1.1% 9.3% 0.3% 1.2%
TabFact 9345 (55.7%) 1.5% 48.3% 0.5% 5.3%
InfoTabs 1926 (70.8%) 15.5% 41.5% 11.3% 2.5%
HybridQA 1223 (9.9%) 0.8% 6.3% 0.1% 2.7%
WikiTQ 158 (7.5%) 0.0% 4.7% 1.3% 1.6%

D.1 Table – Table retrieval error distribution per seed dataset. Total Errors:
Total number of tables not obtained and their share of the total number of tables
in the seed dataset. NO: No Wikipedia article was found. Sim: None of the
tables in the Wikipedia article were similar enough to the serialized table in the
seed dataset. Other: Other types of errors.

D.3 Stage 2 Training Hyperparameters
The Stage 2 training of the model mPLUG-DocOwl 1.5 (Hu et al., 2024) was
carried out in 4x NVIDIA Hopper H100 64GB GPU over 6,500 steps. We follow
the same training hyperparameters as in Hu et al. (2024) with an effective batch
size of 256 (batch 8 x 32 GPUs), and a maximum learning rate of 2e-5 after a
warm-up of 195 steps followed by a cosine decay.

D.4 HybridQA exact match accuracy
Metrics in Section 5.3.2, Table 5.3 include BLEU4 for FeTaQA and ToTTo, and
accuracy for other tasks. However, HybridQA accuracy is calculated based on
whether the reference text is present in the generated sequence, rather than exact
match to fairly evaluate other model’s responses. In this section we show the re-
sults on exact match accuracy and accuracy based on the presence of the reference
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text within the generated sequence. Notably, exact match accuracy follows a sim-
ilar trend, further highlighting the advantage of the model trained with our Stage
2 dataset.

Model Exact match (acc) Contains (acc)
DocOwl1.5 29.8 35.5
DocOwl1.5 (Ours) 46.1 50.7
Table-LLava (7B) 0.0 35.6
Table llama 7.5 36.5

D.2 Table – Accuracy results for the HybridQA dataset evaluation, including
exact match accuracy and accuracy based on the presence of the reference text
within the generated sequence.
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