
EULIA: a graphical web interface for creating, browsing and editing
linguistically annotated corpora

X. Artola, A. Dı́az de Ilarraza, N. Ezeiza, K. Gojenola*, A. Sologaistoa and A. Soroa

Faculty of Computer Science, Donostia / *School of Engineering, Bilbo
University of the Basque Country (UPV/EHU)

The Basque Country
jipdisaa@si.ehu.es

Abstract
In this paper we present EULIA, a tool which has been designed for dealing with the linguistic annotated corpora generated by a set of
different linguistic processing tools. The objective of EULIA is to provide a flexible and extensible environment for creating, consulting,
visualizing, and modifying documents generated by existing linguistic tools. The documents used as input and output of the different
tools contain TEI-conformant feature structures (FS) coded in XML. The tools integrated until now are a lexical database, a tokenizer, a
wide-coverage morphosyntactic analyzer, a general purpose tagger/lemmatizer, and a shallow syntactic analyzer.

1. Introduction
In this paper we present EULIA, a tool which has

been designed for dealing with the linguistic annotated cor-
pora generated by a set of different linguistic processing
tools1(Artola et al., 2000). The objective of EULIA is to
provide a flexible and extensible environment for consult-
ing, visualizing, and modifying the documents generated
by existing linguistic tools, which follow a coherent and
general annotation scheme (Artola et al., 2002).

The interface is based on a general document annota-
tion scheme based on XML. XML provides us with a well-
formalized basis for the exchange of linguistic information
among the different text analysis tools. TEI-P4 conformant
(http://www.tei-c.org/P4X/DTD/) feature structures consti-
tute the representation schema for the different documents
that convey the information from one linguistic tool to the
next one in the analysis chain. So, XML-coded documents
are used as input and output of the integrated tools.

XML is a well-defined standard for representing struc-
tured documents. Its value is due to the fact that it closes off
the option of a proliferation of ad-hoc notations and the as-
sociated software needed to read and write them. The most
important reason for using XML to encode the I/O streams
between programs is that it forces us to formally describe
the mark-up used, and that there exists more and more soft-
ware available to deal with it.

The rest of the paper is organized as follows. Section
2 will be dedicated to explain the representation we have
chosen for the linguistic information obtained from the dif-
ferent tools. In section 3 we present the information flow
among the different linguistic processors. Section 4 de-
scribes the graphical interface with its main design features.
Finally, section 5 presents conclusions and future work.

2. The annotation framework
A key issue in software development in NLP processes

is the definition of a framework for linguistic knowledge
representation. Such a framework has to satisfy needs en-
tailed by the different tools and has to be general enough

1URL: http://ixa.si.ehu.es

(Basili et al., 1998). It is not trivial to adopt a formalism to
represent this information. Different approaches have been
considered for this task. For example, ALEP (Advanced
Language Engineering Platform) (Simkins , 1994), can be
considered the first integrating environment for NLP de-
sign. All the components (linguistic information, process-
ing modules and resources) are homogeneously described
using the ALEP User Language (AUL) based on a DAG
formalism. Others, like GATE (Cunningham et al., 1996),
represent textual information by using the notion of textual
annotation firstly introduced in the TIPSTER project.

There is a general trend for establishing standards for
effective language resource management (ISO/TC 37/TC
4 (Ide et al., 2003)). The main objective is to provide a
framework for language resource development and use.

In our case, within a framework of stand-off linguistic
annotation, the output of each of the analysis tools may be
seen as composed of several XML documents: the annota-
tion web. Figure 1 shows the currently implemented doc-
ument model including tokenization, segmentation, mor-
phosyntactic analysis, multiword recognition and lemma-
tization/disambiguation. This model fulfils the general re-
quirements proposed in the standards (Ide et al., 2003), as
in (Bird et al., 2000; Schäffer , 2003):

• It provides a way to represent different types of lin-
guistic information, ranging from the very general to
the very fine-grained one.

• It uses feature structures as a general data model, thus
providing a formal semantics and a well known logi-
cal operation set over the linguistic information repre-
sented by them.

• Partial results and ambiguities can be easily repre-
sented.

• A general abstract model has been identified over the
particular linguistic processors. Therefore, NLP appli-
cations are able to import/export the information they
need in a unified way.

• The representation is not dependent on any linguistic
theory nor any particular processing software.



Figure 1: The multi-document annotation web

• As said before, our model relies in the XML mark-up
language. XML is a well-defined standard for the rep-
resentation of structured texts that provides a formal
framework for the internal processing. As more and
more pieces of software are available for checking the
syntactic correctness of the documents, information
retrieval, modifications, filtering, and so on, it makes
it easy to generate the information in different formats
(for processing, printing, screen-displaying, publish-
ing in the web, or translating into other languages).

• Our model guarantees that no different mechanism is
used to indicate the same type of information.

We identified the consistent underlying data model
which captures the structure and relations contained in the
information to be manipulated. These data models are rep-
resented by classes which are encapsulated in several li-
brary modules. These modules offer the necessary oper-
ations the different tools need to perform their task when
recognizing the input and producing their output. These
functions allow:

• Getting the necessary information from an XML doc-
ument containing tokens, links, multiword structure
links and FSs.

• Producing with ease the corresponding output accord-
ing to a well-defined XML description.

We have identified different groups and types of docu-
ments:

• Text anchors: text elements found in the input.

– Single-word tokens issued from the tokenizer.
They are tagged with the XML <w> element,
and represented by the W class.

– multiword lexical units: the collection of “multi-
word tokens” identified in the input. The MW-
STRUCT class represents the constituents of a
multiword unit that are tagged by means of
<link> elements. MWSTRUCTL represents
lists of MWSTRUCT objects.



– The structure of the syntactic chunks recognized
in the text: the collection of “spans” identified in
the input. The SPANSTRUCT class represents the
constituents of a chunk that are also tagged by
means of <link> elements.

• Analysis collections: collections of linguistic analyses
obtained by the different tools. Due to the complex-
ity of the information to be represented we decided
to use feature structures as a general data structure.
The use of feature structures quickly spread to other
domains within linguistics since Jacobson (1949) first
used them for the representation of phonemes. Fea-
ture structures serve as a general-purpose linguistic
metalanguage; this reason led us to use them as the
basis of our encoding. The feature structures in the
integrated system are coded following the TEI’s DTD
for FSs, and they fulfil the Feature Structure Declara-
tions (FSD) that have been thoroughly described for
all the inputs/outputs in the tool pipeline. Follow-
ing the object oriented paradigm, the following classes
have been defined in order to deal with feature struc-
tures: FS (feature structure class), FL (list of features
of a feature structure), F (feature class), FVL (the list
of values of a feature), FVALUE (the value of a fea-
ture), and so on. The list of <fs> elements is repre-
sented by the class FSL. We distinguish two kinds of
collections:

– Libraries containing the analyses (FSs) corre-
sponding to the text anchors set in the pro-
cessed texts through the different analysis phases:
seglib, morflib, lemlib, sflib and deplib. They are
tagged by means of <fslib> elements.

– Text-specific documents. Syntactic annotations
associated to a particular input text.

• Links between anchors and their corresponding anal-
yses, tagged by means of <link> elements. They
are represented by the LINK and LINKL (list of LINK

instances) classes.

• Documents: collections of text anchors —single to-
kens, multiword tokens and spans—, analyses, and
links. Several classes to deal with the different kinds
of XML documents participating in the annotation
web have been defined: list of text elements (WXML-
DOC), list of analyses (AXMLDOC), list of links
(LNKXMLDOC), list of multiword units (MWXML-
DOC), etc.

The multi-document annotation web gives, as pointed
out in (Ide and Véronis , 1995; Ide et al., 2003), more in-
dependence and flexibility to the different processes, and
greater facilities for their integration.

3. The I/O stream between programs
These are the linguistic tools integrated so far:

1. EDBL, a lexical database for Basque, which at the mo-
ment contains more than 85,000 entries (Aduriz et al.,
1998a)

2. A tokenizer that identifies tokens and sentences from
the input text.

3. Morpheus, a wide-coverage morphosyntactic analyzer
for Basque (Alegria et al., 1996). It attaches to each
input word form all its possible interpretations. The
result is a set of possible morphosyntactic readings of
a word in which each morpheme is associated with its
corresponding features in the lexicon: category, sub-
category, declension case, number, and definiteness,
as well as its syntactic function (Karlsson et al., 1995)
and some semantic features. It is composed of several
modules such as:

• A segmentizer, which splits up a word into its
constituent morphemes.

• A morphosyntactic analyzer (Aduriz et al.,
2000), whose goal is to group the morphologi-
cal information associated with each morpheme
obtaining the morphosyntactic information of the
word form considered as a unit. This is an impor-
tant step in our analysis process due to the agglu-
tinative character of Basque.

• A recognizer of multiword lexical units
(MWLUs), which performs the morphosyn-
tactic analysis of multiword units present in the
text (Aduriz et al., 1996).

4. EusLem, a general-purpose tagger/lemmatizer (Ezeiza
et al., 1998).

In the future we plan to integrate other tools cur-
rently under development, such as a shallow syntactic ana-
lyzer based on Constraint Grammar (Karlsson et al., 1995;
Aduriz et al., 1998b),

Figure 1 illustrates the integration of the lexical
database, the tokenizer, the morphological segmentation,
morphosyntactic treatment, treatment of MWLUs, and Eu-
sLem (lemmatization) emphasizing that the communication
among the different processes is made by means of XML
documents. Thick line-border rectangles are used to repre-
sent processes, which will be described in sequence:

1. Having an XML-tagged input text file, the tokenizer
takes this file and creates, as output, a w.xml file,
which contains the list of the tokens recognized in the
input text. The tokenized text is of great importance
in the rest of the analysis process, in the sense that it
intervenes as input for different processes.

2. After the tokenization process, the segmentizer takes
as input the tokenized text and the general lexicon is-
sued from the lexical database, and updates the seg-
mentation analyses library (FSs describing the differ-
ent morphemic segments found in each word token)
producing as well a document (seg.xml) containing the
links between the tokens in the w.xml file and their
corresponding analyses (one or more) in the library.
We want to point out that, because of the stand-off
strategy followed in annotating the documents, differ-
ent analyses may be easily attached to one token, thus
allowing us to represent ambiguous interpretations.



3. After that, the morphosyntactic treatment module
takes as input the output of the segmentation process
and updates the library of morphosyntactic analyses.
It processes the seg.xml document issued in the pre-
vious phase producing a morflnk.xml document con-
taining the links between the tokens in the w.xml
file and their corresponding analyses (one or more)
in morf.xml. This document will be later enriched
by the MWLUs’ treatment module. This module per-
forms the processing of multiword lexical units pro-
ducing an mw document that describes, by means of a
collection of <link> elements, the structure of the
MWLUs identified in the text. This module has obvi-
ously access to the morphosyntactic analyses and the
morflnk.xml document, into which it will add the links
between the mwlnk.xml document and the library.

4. The morphosyntactic analyses and the output of the
tokenizer constitute the input of the lemmatizer. The
lemmatizer updates the library of lemmatizations pro-
ducing two link documents: on the one hand, a
lemlnk.xml document that contains the links between
the tokens and MWLUs, and their corresponding
lemmatization analyses. The lemmatizer is also capa-
ble of updating the mwlnk.xml document if, due to the
disambiguation performed, it has to remove some of
the incorrect links previously included in it. Figure 2
shows a part of the document collection corresponding
to the output of the lemmatizer.

4. EULIA: An application for creation,
browsing and disambiguation on the

annotation web

In this chapter we describe an extensible, component-
based software architecture to integrate natural language
engineering applications and to exploit the data created by
these applications. The strategy we have explained for the
integration of NLP tools is complex, as the linguistic infor-
mation of different levels is distributed in many documents
that must be processed. For any linguistic task it is nec-
essary to coordinate different tools and data sources, and
when we add new tools to the production chain, coordi-
nation will become more difficult. Therefore, in order to
carry out the mentioned strategy, we have defined and im-
plemented EULIA, a web-based interface.

4.1. Main functionalities

EULIA is an environment to coordinate NLP tools and
to exploit the data generated by this tools. The NLP tools
explained before are integrated in EULIA and new tools are
currently being integrated. EULIA has two main goals:

• User-oriented linguistic data manager, with an intu-
itive and easy-to-use GUI.

• A system to integrate, coordinate and access NLP
tools. This task is possible by means of a coordina-
tion module and the cooperation of this module with
the user interface.

The GUI is a web-based interface which works with
XML documents created by the integrated NLP tools. Its
main functions are the following ones:

• consultation and browsing of the linguistic annotation
attached to texts

• manual disambiguation of analysis results

• manual annotation facilities and suitable codification
for new linguistic information

• simple text editor to create new texts

• submit a text to be analyzed in the coordination mod-
ule

• search, queries and results analysis

• users control and personalization

4.2. Architecture and implementation

EULIA’s implementation is based on a client-server ar-
chitecture where the client is a Java Applet accessible by
any Java-enabled web browser and the server is a com-
bination of different modules implemented in Java, C++
and Perl (see Figure 4). All modules are designed using
an object oriented methodology. As a consequence, EU-
LIA presents a robust design which is easy to extend. The
client’s goal is to be the intermediary between users and
NLP tools. It fulfils users’ control and user requests’ man-
agement. The interface provides different facilities which
can be grouped in three main tasks:

• Data browsing: it visualizes the answers of the re-
quests that users make to EULIA. Usually, these re-
quests involve a complex procedure and need the in-
formation available in the server to resolve it; that is
why the requests are processed by the server. In case,
it is necessary to submit an answer to the user, this will
be a XML document and will be visualized accord-
ing to the suitable stylesheet (XSL document). These
stylesheets could be changed dynamically depending
on both the users’ choice and the type of answer.

• Manual disambiguation: because of the integration
strategy, disambiguation is an easy task. It consists of
eliminating or marking the wrong links among analy-
ses and units (token, multiword, dependencies, etc.) in
link documents. EULIA presents a specific interface
for this task which is generic for all link documents
coded according to TEI guidelines.

• Manual annotation: depending on annotation type, a
different kind of information is needed. In order to get
these data, EULIA’s GUI generates a suitable form,
based on the XMLSchema, which defines the docu-
ment’s format for that annotation type. These forms
are a HTML document and are generated using XSL
documents. Communication between the GUI Applet
and the server is established by means of Java Remote
Method (RMI), which allows incremental construction
of the communication protocol and a natural way to



<text id='TDoc0001' lang='eu'>
<body>
<p id='p1'>Hala ere, Marijose ere

kalera dijoa.</p>
</body>
</text>

Input text (.xml)

<text id='WDoc0001'>
<!-- . . . -->
<w id='w1' sameAs='Xw1' type='BEG_UC'>Hala</w>
<w id='w2' sameAs='Xw2'>ere</w>
<w id='w3' sameAs='Xw3' type='PUNCT'>,</w>
<w id='w4' sameAs='Xw4' type='BEG_UC'>Marijose</w>
<w id='w5' sameAs='Xw5'>ere</w>
<w id='w6' sameAs='Xw6'>kalera</w>
<w id='w7' sameAs='Xw7'>dijoa</w>
<w id='w8' sameAs='Xw8' type='PUNCT'>.</w>
<!-- . . . -->

</text>

Tokenized text

(.w.xml)

<linkGrp type='w-lem' tagOrder='y'>
<link targets='w4 IZE-IZB-3'/>
<link targets='w5 LOT-LOK-3'/>
<link targets='w6 IZE-ARR-21'/>
<link targets='w6 ADI-SIN-20'/>
<link targets='w7 ADT-9'/>

</linkGrp>
<linkGrp type='mwlnk-lem' tagOrder='y'/>

<link targets='mwlnkl LOT-
Lok-7'/>
<linkGrp>

Link document

(.lemlnk.xml)

<linkGrp type=’MWLU’ tagOrder=’y’>
<link id=’mwlnk1’ targets=’w1 w2’/>

</linkGrp>

MWLUs´ structure (.mwlnk.xml)

<text id="LemDoc0001">
<!-- . . . -->
<fs id="LOT-LOK-3" type="Lemmatization">
<f name="Form"><str>ere</str></f>
<f name="Lemma"><str>ere</str></f>
<f name="Morphological-Features">
<fs type="Top-Features-List">
<f name="POS"><sym value="LOT"/></f>
<f name="SUBCAT"><sym value="LOK"/></f>
<f name="SFL" org="list"><sym value="@LOK"/></f>

</fs>
</f>

</fs>
<fs id="LOT-LOK-7" type="Lemmatization">
<f name="Form"><str>hala ere</str></f>
<f name="Lemma"><str>hala ere</str></f>
<f name="Morphological-Features">
<fs type="Top-Features-List">
<f name="POS"><sym value=“LOT"/></f>
<f name="SUBCAT"><sym value="LOK"/></f>

</fs>
</f>

</fs>
<fs id="IZE-IZB-3" type="Lemmatization">
<f name="Form"><str>Marijose</str></f>
<f name="Lemma"><str>Marijose</str></f>
<f name="Morphological-Features">
<fs type="Top-Features-List">
<f name="POS"><sym value=“IZE"/></f>
<f name="SUBCAT"><sym value=“IZB"/></f>

</fs>
</f>

</fs>
<!-- . . . -->

</text>

Lemmatizations 

Figure 2: Output of the lemmatizer: a sample of the multi-document annotation web

relate client and server objects. While the client side
of the EULIA system consists of an Applet, the server
part contains a set of three modules. The first mod-
ule gives service to clients and it coordinates the inte-
grated NLP tools and stored linguistic analyses.

The second module is a layer between the coordination
module and NLP tools. It carries out a generalization of
the tools and the analyses.

Finally, the last component is not a module but a set of
integrated tools and their outputs.

• Coordination: It coordinates clients’ request process
and submits the answer in a XML document. In order
to answer clients’ requests, sometimes it is necessary
to generate new linguistic information by the use of in-

tegrated tools. Other times, it is enough to search the
answer in an existing annotation web. In case it is nec-
essary to generate new information, the system sends
the request to the abstraction layer. On the contrary, if
the request can be answered from the stored informa-
tion, we use LibiXaML library to interpret the anno-
tation web and to recover the documents from the ab-
straction layer. The coordination module has responsi-
bility of managing the set of integrated NLP tools. The
final objective of this module is twofold: a) To be the
GUI’s server and to answer GUI’s requests. To solve
the requests, this module distributes the tasks among
the integrated tools. b) To create a workbench which
facilitates the integration of NLP tools and the cooper-
ation among them.



Figure 3: Application GUI.

Figure 4: General architecture of the tool.

• Abstraction layer: the main goal of this module is to
keep separate the coordination module of integrated
tools, the analyses and their location. In order to
archive this goal, this layer implements an interface
for the coordination module. In this layer the relation
between analysis type and tools and the way to recover
stored information is defined, and it facilitates the def-
inition of different computing paradigms to determi-
nate the interaction among the linguistic tools. For the
moment, a simple serial model has been implemented.

• Set of tools: this set is composed of integrated tools
and their outputs. These tools’ input and output are
coded according to the integration strategy explained

before.

In order to integrate a new NLP tool in EULIA system,
the input and output of the mentioned tool has to be coded
according to integration strategy presented before. More-
over, for a complete integration, it is necessary to define
the relation between the new analysis type and tools and
the stylesheets used to visualize this analysis. EULIA is a
powerful system but it is not complex thanks to the integra-
tion strategy. In this strategy, all linguistic information is
coded in a similar model, so the treatment of different data
is similar. Moreover, EULIA is a generic system and offers
many possibilities to be extended to different applications.
EULIA is, without a doubt, a useful basis for different areas



of linguistic engineering.

4.3. Example

The interface has been designed to be easy-to-use and
intuitive. The main window is divided into two parts (see
Figure 3): a left MDI panel where the analyzed text is
shown to the user, and the right part where linguistic infor-
mation is shown in an understandable way. The interface
provides hypertextual facilities, showing on the right hand-
side linguistic information associated to items selected on
the left part. The environment is designed as a tool for gen-
eral users and linguists. The system gives the information
the user has asked for about ambiguous units in a lemma-
tized text. It is important to notice that the item selected
can be, in the example, a single word or a multiword ex-
pression, since currently the application has been tuned to
deal with lemmatization results (actually, the selectability
of text chunks depends on the underlying tool the interface
is dealing with).

Linguistic Analysis Tool

(FS´s internal representation)

GENERAL FRONT-END
(input recognizer)

GENERAL BACK-END
(output producer)

FSD corresp.
to output

FSD corresp.
to input

analysis data from 
the previous tool

input text

TEI´s DTDs
For FSs

Results of the analysis

Figure 5: Schematic view of a linguistic analysis tool with
its general front- and back-ends.

5. Conclusion and future work
We have presented a general environment for linguistic

processing. The environment is oriented to be used by gen-
eral users and has been designed to be informative, easy-
to-use, and intuitive. It is coupled to a methodology of in-

tegration of linguistic tools based on a common annotation
framework, general and extensible to similar systems.

For the near future, we are considering the feasibility of
building general front- and back-end modules for the anal-
ysis tools, which will take as input the specific FSDs for
each input/output. A schematic view of the integration of
these general modules with a particular tool can be seen in
Figure 5. This will facilitate the future integration of new
tools into the analysis chain. Indeed, the work done so far
confirms the scalability of our approach.

Acknowledgements

This research was partially funded by the Basque Gov-
ernment under the HIZKING21 program (project EJ-
ETORTEK2002HIZKING21).

6. References
Aduriz I., Aldezabal J.M., Artola X., Ezeiza N.,Urizar

R. 1996. Multiword Lexical Units in EUSLEM: a
lemmatiser-tagger for Basque. In Proc. in Computational
Lexicography (Complex’96), 1-8. Linguistics Institute,
Hungarian Academy of Sciences. Budapest (Hungary).

Aduriz I., Agirre E., Aldezabal I., Alegria I., Ansa O., Ar-
regi X., Arriola J.M., Artola X., Dı́az de Ilarraza A.,
Ezeiza N., Gojenola K., Maritxalar A., Maritxalar M.,
Oronoz M., Sarasola K., Soroa A., Urizar R., Urkia M.
1998. A Framework for the Automatic Processing of
Basque. In Proc. of the First Int. Conf. on Language Re-
sources and Evaluation. Granada (Spain).

Aduriz I., Aldezabal I., Ansa O., Artola X., Dı́az de Ilarraza
A., Insausti J. M. 1998. EDBL: a Multi-Purposed Lexical
Support for the Treatment of Basque. In Proc. of the First
Int. Conf. on Language Resources and Evaluation, vol II,
821-826. Granada (Spain).

Aduriz I., Agirre E., Aldezabal I., Arregi X., Arriola J.M.,
Artola X., Gojenola K., Maritxalar A., Sarasola K., Urkia
M. 2000. A Word-Level Morphosyntactic Grammar For
Basque. In Proc. of the Second Int. Conf. on Language
Resources and Evaluation. Athens (Greece).

Aduriz I., Aldezabal I., Aranzabe M., Arrieta B., Arriola
J., Atutxa A., Dı́az de Ilarraza A., Gojenola K., Oronoz
M., Sarasola K. 2002 Construcción de un corpus etique-
tado sintácticamente para el euskera. In Actas del XVIII
Congreso de la SEPLN. Valladolid (Spain).

Artola X., Dı́az de Ilarraza A., Ezeiza N., Gojenola K.,
Maritxalar M., Soroa A. 2000 A proposal for The In-
tegration of NLP Tools using SGML-Tagged documents.
Second Int. Conf. on Language Resources and Evalua-
tion. Athens (Greece). May.

Artola X., Dı́az de Ilarraza A., Ezeiza N., Gojenola K.,
Hernández G., Soroa A. 2002. A Class Library for the In-
tegration of NLP Tools: Definition and implementation
of an Abstract Data Type Collection for the manipulation
of SGML documents in a context of stand-off linguistic
annotation. In Third Int. Conf. on Language Resources
and Evaluation. Las Palmas. Spain.

Alegria I., Artola X., Sarasola K., Urkia M. 1996. Auto-
matic morphological analysis of Basque. Literary & Lin-
guistic Computing, 11, no. 4, 193-203.



Basili, R., Di Nanni, M., Pazienza, M.T. 1998. “Engineer-
ing of IE Systems: An Object-oriented approach”. In-
formation Extraction: Towards scalable, Adaptable Sys-
tems. M.T. Pazienza (Ed.). Springer Verlag.

Bird, S., Day, D., Garofolo, J., Henderson J., Laprun G.,
Liberman M. 2000. ATLAS: a Flexible and Extensible
Architecture for Linguistic Annotation. In Second Int.
Conf. on Language Resources and Evaluation. 1699-
1706. Athens (Greece).

Cunningham H., Gaizauskas R.J. and Wilks Y. 1996. A
General Architecture for Language Engineering (GATE)
- a new approach to Language Engineering R&D. In Pro-
ceedings of COLING’96. Copenhagen.

Ezeiza N., Aduriz I., Alegria I., Arriola J.M., Urizar R.
1998. Combining Stochastic and Rule-Based Methods
for Disambiguation in Agglutinative Languages. In Proc.
COLING-ACL’98, 10-14. Montreal (Canada).

Goldfarb, C.F. 1999. The XML Handbook. Prentice Hall
Iberia. SRL, Madrid.

Ide N., Véronis J. (eds.), 1995. Text Encoding Initiative.
Background and Context. Kluwer Academic Pub.

Ide N., Romary L., 2003. A Common Framework for
Syntactic Annotation . Proc. of ACL’2001, pp 298-305.
Toulouse (France).

Ide N., Romary L., Clergerie E. de la, 2003. International
Standard for a Linguistic Annotation Framework. Proc.
HLT-NAACL 2003 Workshop: Software Engineering and
Architecture of Language Technology Systems, pp 25-30.
Edmonton (Canada).

Jacobson R. 1949. The Identification of Phonemic Entities.
Travaux du Cercle Linguistique de Copenhague, 5, 205-
213.

Karlsson F., Voutilainen A., Heikkilä J., Anttila A. 1995.
Constraint Grammar: A Language-independent System
for Parsing Unrestricted Text. Mouton de Gruyter.

Schäffer U. 2003. WHAT: An XSLT-based Infraestructure
for the Integration of Natural Language Processing Com-
ponents. Proc. HLT-NAACL 2003 Workshop: Software
Engineering and Architecture of Language Technology
Systems, pp 9-16. Edmonton (Canada).

Simkins N. K. 1994. An Open Architecture for Language
Engineering. In First CEC Language Engineering Con-
vention. Paris.

Thompson H.S., Tobin R., Mckelvie D. and Brew C. 1997.
LT XML Software API and toolkit for XML processing.
http://www.ltg.ed.ac.uk/software/xml/index.html


