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Abstract

This work tackles Electronic Health
Record (EHR) classification according to
their Diagnostic Terms (DTs) following
the standard International Classification
of Diseases-Clinical Modification (ICD-9-
CM). To do so, we explore text mining
relying on a wide variety of data from
both standard catalogues, such as the ICD-
9-CM and SNOMED-CT; and, what it
was proven even more effective, real data
sources, such as EHRs.

The models we put forward to deal with
this problem are Finite-State Transducers
(FSTs). The aim behind FSTs would be
not only to accept exact terms in the ICD-
9-CM but also alternative variants. To be
precise, a series of FSTs were defined to
carry out a soft-matching process between
DTs written in natural language and those
in the standard form as in the ICD-9-CM
catalogue.

1 Introduction

The Clinical Documentation Service of the
Galdakao-Usansolo Hospital (a hospital attached
to the Spanish Ministry of Health, Social Ser-
vices and Equality) is interested on automatis-
ing the classification of Electronic Health Records
(EHRs). EHRs include several fields such as: a
description of the patient’s details, antecedents,
procedures and methods of administration of
medicines, and Diagnostic Terms (DTs). It is the
DTs that serve as the classification key to clas-
sify EHRs according to the World Health Organi-
sation’s 9th Revision of the International Classifi-
cation of Diseases - Clinical Modification (ICD-9-
CM)1. The goal of this work is to develop a system

1The reader might be aware of the fact that for English
other codification systems (such as ICD-10) are also reported

to automatically classify DTs in an attempt to alle-
viate the work load by the Clinical Documentation
Service but never at the expense of precision. This
task presents the following challenges:

1. Natural language in EHRs vs. medical jargon
in ICD-9-CM

2. Large-scale classification problem: including
more than 14× 103 different classes

3. Working towards a 100% precision

1.1 Related work

A large number of sophisticated machine learning
algorithms have been applied to the task of DT
classification. Ferrao et al. (2012) used a com-
mercial system based on either Naive-Bayes or de-
cision trees to tackle multi-label classification of
EHRs restricted to the Internal Medicine depart-
ment.

The top systems in the 2007 Computational
Medicine Challenge have benefited from incor-
porating domain knowledge of free-text clinical
notes, such as negation, synonymy and hyper-
onymy, either as hand-crafted rules in a symbolic
approach, or as carefully engineered features in
a machine learning component: (Goldstein et al.,
2007; Crammer et al., 2007; Aronson et al., 2007;
Patrick et al., 2007). Yet, this shared task in-
volved the assignment of ICD-codes to radiology
reports written in English from a reduced set of 45
codes (Pestian et al., 2007). By contrast, we focus
on the entire scope of the ICD-9-CM catalogue.

Most of the systems described in the literature
were developed for English. Looking at other lan-
guages, Metais et al. (2007) reported a system to
classify medical reports in French.

in the literature, nevertheless, it is the ICD-9-CM the one be-
ing currently used by the Spanish Health System even though
it is foreseen to move to ICD-10 in the near future.



2 Methods: Finite-State Transducers

Finite-State Automata (FSA) serve to the pur-
pose of recognising regular grammars (Chomsky,
1959). A grammar is used to either generate or
parse the strings accepted in the language recog-
nised by the FSA. In our medical domain the DTs
in the ICD-9-CM catalogue represent the set of
acceptable strings within a formal language with
a particular syntax. Thus, inferring the grammar
underlying the DT domain would help to assess
whether a given string could be considered or not
appropriately expressed in that language.

Finite-State Transducers (FSTs) are an exten-
sion of FSAs that encompasses two languages: in-
put and output. FSTs serve to analyse an input
string and associate an output string (in case that
the input is acceptable in the source language).
That is, FSTs serve to map from one language to
the other. The nature of the FSTs does not allow
to accept any string out of the language, and this
property strives towards a high precision.

2.1 Implementation
In brief, the system is designed as a composition
of three FSTs: lexicon, normalisation and gener-
ation. The FSTs were next integrated on a pri-
ority union basis. This operation allows a wide
search while it tries to stick as possible to the
input. Besides, it rejects some strings, meaning
that it reveals ill-formed DTs. All the FSTs as
well as their operations were implemented through
Foma (Hulden, 2009). Foma is a freely available
toolkit that allows to build finite-state transduc-
ers and also includes efficient parsing functions.
Besides, it supports imports from, and exports to,
other toolkits, such as Xerox’s XFST (Beesley and
Karttunen, 2003), AT&T (Mohri et al., 2003) and
OpenFST (Riley et al., 2009). Next we provide
some details of each FST:

1. FST-Lexicon: it compiles the reference col-
lection of allowed (DT, ICD-code) pairs, that
is, the lexicon of the application. This FST is
automatically built by Foma from the set of
pairs allowed. The data-sets involved in the
lexical model came from two sources:

• ICD-9-CM: consists of more than
14, 435 different (DT, ICD-code) pairs
not restricted to a single clinical domain.
• EHRs in Spanish: a set of more than

28,000 (DT, ICD-code) pairs with DTs

written by doctors and coded by experts
in EHRs that allows supervised classifi-
cation.

2. FST-Normalisation: it carries out elemen-
tary pre-processing operations. The goal is to
get all the inputs re-cased, to get rid of writ-
ten accents and other punctuation marks that
are considered as noisy. This FST was built
from rules and compiled as an FST by Foma.
An example of the rules underlying this FST
is given in Figure 1a.

3. FST-Generation: it allows to generalise the
reference lexicon by means of synonyms,
acronyms, etc. As a result, it allows to gen-
erate new alternatives for the DTs. This
FSTs implements rules to check punctuation
marks, to allow number variation (to create
singular and plural forms for a given DT in
the reference), the omission and equivalence
of some prepositions, either expand abbre-
viations, synonyms of the reference accord-
ing to SNOMED-CT, optional replacement in
a given context, composition, union, projec-
tion,etc. For exemplification purposes, some
of these rules are shown in a very simplified
manner in Figure 1b.

Let us show in an example the procedure by
which the system makes it possible the automatic
assignment of the correct ICD-code, 185, to the
DT “Ca. prostata” used in an EHR. In the ICD-
9-CM the term encoded with 185 is “Neoplasia
maligna de la próstata”. Hence, an exact lookup
operation would have been unproductive. Never-
theless, the soft-matching operations implemented
through the proposed FST are able to find the re-
quired term, and accordingly, provide the corre-
sponding ICD-code. As a first step, both terms
(the DT and the one in the ICD list) are nor-
malised by the FST-Normalisation that was de-
fined from the set of rules denoted as Accents
and Low2Upp (see Figure 1a). The normalisa-
tion step yields “CA. PROSTATA” and “NEOPLA-
SIA MALIGNA DE LA PROSTATA”. After that, the
FST-Generation proceeds with the generation of
several alternatives: the AltCa rule enables the
equivalence of several alternatives, such as “CA.”
and “NEOPLASIA MALIGNA”. Hence, this en-
ables to parse “CA. PROSTATA” as “NEOPLA-
SIA MALIGNA PROSTATA”. Finally, the Preps
rule adds the prepositions, leading to the standard



Accents [á -> a].o.[é -> e].o. ... .o. [ú -> u];
Low2Upp [a -> A].o.[b -> B] .o. ... .o. [z -> Z];

.

.

.
.
.
.

(a) Normalisation

Pl I [S|ES] (->) "" || Upper [.#. | "." | ","];
Pl [..] (->) ([S|ES]) || Upper [.#. | "." ];
R4 IV (->) "4" || " " [.#.|"."|" "];
Preps [..] (->) [de |del| de la |con |por ]||" " ;
AltCa [NEOPLASIA MALIGNA|CA.|ADENOCARCINOMA|...];
EquivCa [AltCa:AltCa];

.

.

.
.
.
.

(b) Generation

Figure 1: Rules underlying the FSTs involved: FST-Normalisation and FST-generation

term in the ICD list “NEOPLASIA MALIGNA DE

LA PROSTATA” from the DT in the EHR “CA.
PROSTATA”.

The FSTs were arranged with a priority union
in such a way that each FST contributed with ad-
ditional capabilities to the previous one. The trans-
ducers were composed in such a way that the most
simple transducer was looked-up first and the one
allowing the higher variability last. That is, a pri-
ority union is applied to compose the different
transducers.

3 Experimental results

For this task it is preferred to get accurate results
with high precision even at the expense of low cov-
erage. Hence, the system allows rejections when-
ever the input DT does not match any of the al-
ternatives allowed in the language accepted by the
FST. That is, all the instances that did not soft-
match a DT in the FST are left unclassified and
this is why we are not referring to our system as a
fully automatic classification system but as a clas-
sification support system, instead.

Accordingly, for a given DT there are three pos-
sible outcomes:

Reject: the DT was not assigned any code by the
system because the input DT did not soft-
match any of the accepted alternatives in the
FST. That is, there was not any path in the
transducer accepting the source string.

Miss: the DT was assigned a code by the sys-
tem that did not match the manually assigned
ICD-code.

Hit: the DT was assigned a code that matched the
one in the reference.

The performance of the FST, shown in Table 1,
was assessed using a 5-fold cross validation on the
EHR set of 28,000 (DT, ICD-code) pairs, while
including also the ICD-9-CM set to feed the FST-
Lexicon.

In order to make clear the relevance of both
the nature of the seed lexicon and the genera-
tion operation, we made a baseline experiment:
the lexicon consisted only of the standard ICD-9-
CM set of pairs and while normalisation operation
was allowed, we did not allow for any generation.
Through this baseline we meant to measure the
number of DTs written by doctors nearly as in the
standard ICD-9-CM. Although the ICD-9-CM is
composed of 14,435 different pairs, the number of
hits achieved was 7.1%. Moreover, allowing next
the generation operation on the same lexicon, the
hits represent the 8.1%, the rejections the 89.0%
and the misses the 2.9%. Comparing this baseline
with the results in Table 1, the conclusion drawn
is that the aid of real EHRs seems to be of much
benefit in what comes to feeding the lexicon of the
FST.

Evaluation Rejections Misses Hits
automatic 12.0% 1.2% 86.8%

Table 1: Performance of the FST.

3.1 Impact of real data on performance
Having incorporated EHRs to the allowed lexicon
provided excellent results with respect to the base-
line. Hence, it seemed of interest to quantitatively
assess the impact of including more and more in-
stances from EHRs, which is, precisely, one of the
hubs of this paper.

The aim is to learn a regression model that
would predict the effect of adding further data on
the coverage. To do so, more and more instances
from EHRs were progressively added to the lex-
icon and the improvements in terms of coverage
were evaluated. A polynomial regression on the
evaluation data was carried out showing the fol-
lowing approximated relation:

y ≈ f(x) = a2 · x2 + a1 · x+ a0 (1)

being:



x the size of the (DT, ICD-code) pairs from
EHRs used to feed the FST-Lexicon, pre-
sented in logarithmic scale.

y the number of rejections provided by the FST,
expressed as a percentage.

to be precise:

x = ln(|C|) (2)

y =
|R| ∗ 100
|R|

(3)

On this basis, a quadratic polynomial predictive
model presented in eq. (1) was derived with the
following coefficients:

a2 = 1.57 a1 = −37.5 a0 = 226 (4)

These results, represented in Figure 2, show that
even a small corpus would represent a leverage to
gain on coverage for similar tasks.

6.5 7 7.5 8 8.5 9 9.5 10 10.5
5

10

15

20

25

30

35

40

45

x

y

 

 
Data
Polinomial model
Confidence intervals

Figure 2: The number of rejections as a percent-
age (in the ordinate) with respect to the size of
the corpus in logarithmic scale (abscissa). Ex-
perimental results are represented as circles. The
quadratic polynomial function proposed in eq. (1)
is represented together with its confidence interval
by the curve and its upper and lower bounds.

The experimental results show that the corpus
plays a core role on the performance of the sys-
tem. While the standard ICD list showed to be of
help, significantly better results were obtained ex-
tracting the lexicon from previously classified DTs
written in EHRs. The impact of adding more and
more DTs from previous EHRs to the corpus has
shown to reduce the number of unclassified DTs
in a logarithmic basis. Moreover, as a side effect
the precision was also improved.

4 Concluding remarks and future work

In this work we present a system to classify diag-
nostic terms in Spanish according to the ICD-9-
CM standard. The approach was based on the rep-
resentation of a corpus of (DT, ICD-code) pairs in
terms of FSTs that would parse an input DT into
an output ICD-code.

The experimental results showed that the corpus
played a core role on the performance of the sys-
tem. The role played by the corpus opens another
line of research: possibly lower amounts of data
could be used with similar performance making
use of adaptive models for different user-profiles
(writing styles, use of abbreviations, etc.).

To sum up, the contribution of this paper are:

1. Large-scale and high precision automatic DT
classification: the main contribution of this
work is a high precision automatic classifica-
tion of DTs in EHRs according to the ICD-
9-CM reference. We propose the use of the
FST framework, that allows not only to do an
exact lookup but also a soft-matching within
the lexicon or a set of positive samples.

2. Quantification of the benefits of real data: we
propose the use of previously classified cor-
pus in order to enhance the matching process
adding DTs written differently to the stan-
dard.

3. Development of medical resources in Span-
ish: to the authors’ knowledge this is the first
attempt using all the codes in the ICD list
in Spanish and rule-based pattern recognition
approach. In addition, we contributed with
an underlying process of acquisition and also
with a pre-processing of valuable lexical re-
sources within the medical domain in Span-
ish.

Future work will focus on those DTs that were
rejected by the system (and thus, left unclassi-
fied) in an attempt to gain coverage. Together
with FSTs, other strategies, such as support vec-
tor machines shall be explored. While this work
was presented as an automatic classification ap-
proach, since the goal is to arise a 100% preci-
sion, it seems of interest to explore the unclas-
sified DTs through interactive pattern recognition
approaches (Toselli et al., 2011). This is can also
be achieved through FSTs, since they were proven
efficient in computer-aided tasks.
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