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Abstract

Text and Knowledge Bases are complementary sources
of information. Given the success of distributed word
representations learned from text, several techniques to
infuse additional information from sources like Word-
Net into word representations have been proposed. In
this paper, we follow an alternative route. We learn
word representations from text and WordNet indepen-
dently, and then explore simple and sophisticated meth-
ods to combine them. The combined representations are
applied to an extensive set of datasets on word sim-
ilarity and relatedness. Simple combination methods
happen to perform better that more complex methods
like CCA or retrofitting, showing that, in the case of
WordNet, learning word representations separately is
preferable to learning one single representation space
or adding WordNet information directly. A key factor,
which we illustrate with examples, is that the WordNet-
based representations captures similarity relations en-
coded in WordNet better than retrofitting.

In addition, we show that the average of the similarities
from six word representations yields results beyond the
state-of-the-art in several datasets, reinforcing the op-
portunities to explore further combination techniques.

Introduction

Word embeddings successfully capture lexical semantic in-
formation about words based on co-occurrence patterns ex-
tracted from large corpora, with excellent results on sev-
eral tasks, including word similarity (Collobert and Weston
2008; Turian, Ratinov, and Bengio 2010; Socher et al. 2011).
More recently, the combination of distributed word repre-
sentations and knowledge bases (KBs) is gaining strength,
exploring the use of KBs such as WordNet (Miller 1995),
FreeBase (Bollacker et al. 2008) and PPDB (Ganitkevitch,
Van Durme, and Callison-Burch 2013) on tasks such as
word similarity and synonym selection (Faruqui et al. 2015),
or analogy (Rastogi, Van Durme, and Arora 2015). These
methods are built on text-based methods (Mikolov, Yih,
and Zweig 2013; Pennington, Socher, and Manning 2014;
Huang et al. 2012) and use flat lists of relations from KBs
to either modify the learning algorithms (Halawi et al. 2012;
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Wang et al. 2014a; Tian et al. 2015; Rastogi, Van Durme, and
Arora 2015) or post-process previously learned word repre-
sentations (Faruqui et al. 2015).

This paper departs from previous work in that it ex-
plores the combination of word representations which have
been independently learned from different sources like text
corpora or WordNet. We tried several simple combination
techniques like, among others, averaging similarity results
or concatenating vectors, and more complex methods like
canonical correlation analysis (Faruqui and Dyer 2014) or
the recently proposed retrofitting (Faruqui et al. 2015). In
particular, we combine state-of-the-art corpus-based word
representations (Mikolov et al. 2013a) and WordNet-based
word representations (Goikoetxea, Soroa, and Agirre 2015).
The simple methods outperform the more complex methods,
as shown in several similarity and relatedness datasets. In the
case of retrofitting, we show that our WordNet-based embed-
dings are able to represent the rich information in WordNet.

The paper is structured as follows. We first present re-
lated work, followed by the methods to produce our word
representations. The next section presents several combina-
tion techniques, followed by the experiments combining two
representations. We then present additional word representa-
tions and their combinations.

Related Work

Recently, several researchers have tried to infuse knowl-
edge from KBs into corpus-based word representations.
(Halawi et al. 2012) incorporated KB information in low-
dimensional word embeddings adding WordNet-based con-
straints to the optimization process. The constraints are
given by a set of related word pairs in WordNet, which need
to be close in the embedding space.

(Wang et al. 2014b) introduced typed relations between
entities from Freebase in the learning algorithm, projecting
entity embeddings onto an hyperplane w.r.t. the KB relation
and using those projected vectors in the scoring function.
(Tian et al. 2015) improved the method by adopting different
projections for head and tail entities when defining the loss
function.

(Faruqui and Dyer 2014) find the correlations between
two sets of multidimensional variables in order to com-
bine word spaces coming from two different languages.
They projected their original monolingual word vectors to a



shared (multilingual) space, improving their performance in
similarity and analogy tasks. We will apply their technique
to combine two spaces in the same language.

(Faruqui et al. 2015) proposed a graph-based method to
incorporate relational information from KBs. Contrary to
previous techniques they can improve the quality of any pre-
existing word representations. The algorithm optimizes eu-
clidean distances between words which are related in the
KB. They applied it to pre-existing vectors like Skip-gram
(Mikolov et al. 2013b) using relational information from
WordNet, PPDB (Ganitkevitch, Van Durme, and Callison-
Burch 2013) and FrameNet (Baker, Fillmore, and Lowe
1998). We will compare retrofitting head to head to our com-
bination methods in the “Comparison to retrofitting” section.

In related work, (Rastogi, Van Durme, and Arora 2015)
generalized the traditional LSA single-view model by the
Generalized Canonical Correlation Analysis, so that the
model is able to introduce different sources of information
when learning. They combined the English part of the poly-
glot Wikipedia (Al-Rfou, Perozzi, and Skiena 2013), a large
bitext corpus from PPDB project and the Annotated Giga-
word Corpus (Napoles, Gormley, and Van Durme 2012),
as well as relational information from WordNet, FrameNet,
PPDB, CatVar (Habash and Dorr 2003) and morpha (Min-
nen, Carroll, and Pearce 2001). They evaluated their multi-
view approach in various similarity and relatedness datasets,
achieving competitive results with the state of the art.

Following a different strategy, in (Goikoetxea, Soroa, and
Agirre 2015) we encoded the structure of WordNet, combin-
ing a random walk algorithm and dimensionality reduction.
We created a pseudo-corpus with the words emitted in a ran-
dom walk over WordNet, and then produced a distributed
word representation using word2vec!. Contrary to the previ-
ous proposals, our method only uses information in Word-
Net. We will build on this work in our experiments.

Word Representations

In our experiments we learn word representations from in-
formation coming from textual corpora and KBs. When
needed, we tuned free parameters in one of the smallest sim-
ilarity datasets (RG, see the “Datasets and Evaluation” sec-
tion).

Text-based representations

Following (Baroni, Dinu, and Kruszewski 2014), we created
a corpus, which we call WBU, by concatenating the English
Wikipedia?, the British National Corpus® and ukWaC*. The
corpus comprises 5 - 10° tokens. Using this corpus, we ap-
plied a skipgram Neural Network Language Model (NNLM)
(Mikolov et al. 2013a)’ in order to produce the represen-
tations (WBU for short). In the skipgram model each cur-
rent word is input to a log-linear classifier with a continuous

"https://code.google.com/p/word2vec/

*linguatools.org/tools/corpora/wikipedia-monolingual-
corpora/

3http://www.natcorp.ox.ac.uk

*http://wacky.sslmit.unibo.it

>https://code.google.com/p/word2vec/

projection layer, which predicts the previous and subsequent
words in a context window. We optimized the parameters on
RG, resulting in the following: dimensionality of 300, 5 neg-
ative samples, sub-sampling threshold of zero and window
size of 5 words.

WordNet-based representations

We used the method described in (Goikoetxea, Soroa, and
Agirre 2015), which combines random walks over KBs and
NNLMSs in order to produce the word representations.

Given the novelty of these representations, we explain
them in more detail.

The random walks generate compact contexts (a so-called
pseudo-corpus) that implicitly contain the graph’s semantic
relations and thus encode the structure of the KB. The graph
is formalized as G = (V, E), where V is the set of concepts
and E the undirected links between concepts. A dictionary
encodes the lexicalization of concepts as words. The algo-
rithm uses as inputs the graph, the dictionary and a restart
probability «. Firstly it selects the starting point of the ran-
dom walk, which is going to be a random vertex from V.
Then, at every step of the random walk, the algorithm tosses
a coin to restart the random walk (with probability 1 — ), or
to select a neighbor vertex at random and continue the ran-
dom walk. In each vertex, it emits one of the lexicalizations
of the concept at random. When the random walk restarts,
the emitted words are included in the pseudo-corpus as a
sentence, and a new starting vertex is selected. The walk
halts after a pre-defined number of restarts.

In our experiments we derived the graph and dictionary
from WordNet 3.0 with gloss relations®. The graph com-
prises 117.522 vertices (synsets) and 525.356 edges (seman-
tic relations). We ran the random walk for 2 - 108 restarts,
emitting 1.1-10° tokens. The pseudo-corpus was fed into the
same skipgram model as for text-based representations, pro-
ducing dense WordNet-based representations (RWwn for
short) which encode the structural information in WordNet.
We used the parameters reported in (Goikoetxea, Soroa, and
Agirre 2015)7, but we run more iterations of the random
walk algorithm, as it produced slightly better results on RG.
Note that, contrary to text corpora, the amount of effective
information is delimited by both the graph and the number
of random walks, but further iterations did not improve re-
sults in RG.

The random walk produces contexts like the follow-
ing: yucatec mayan quiche kekchi speak sino-tibetan
tone_language west_chadic talk.The example shows how the
contexts encode implicitly the information in WordNet. It
starts with yucatec, which is a mayan language, followed by
mayan, followed by two different spellings of another mayan
language quiche and kekchi, followed by a related verb
speak, and goes on with some other different languages or
language-related terms. Contexts may contain multiwords,
nouns, verbs, adjectives and adverbs.

Shttp://wordnet.princeton.edu/glosstag.shtml
"Dimensionality of 300, 3 iterations, 5 negative samples, win-
dow size 5.



Combination methods

We tried several combinations of word representations.
When needed, we tuned free parameters using RG as the
development dataset.

Simple vector combinations

Two vectorial word representations can be easily combined
concatenating the two vectors (CAT), computing the cen-
troid (CEN), or creating a complex number (CMP). The lat-
ter, is based on the proposal of (Wittek et al. 2014) in which,
on the one hand, they used the real component of the com-
plex vectors to represent the distributional semantics, and
on the other, they encoded the ontological data in the imag-
inary component. In our particular case, we introduced the
corpora-based embeddings in the real part and the WordNet-
based ones in the imaginary part.

These combinations cannot be applied to vectors of dif-
ferent dimensionality. In the case of concatenation, although
technically possible, the vector with higher dimensionality
will tend to dominate the combined similarity results.

Correlation analysis

Principal Component Analysis (PCA) (Jolliffe 2014) is a
technique to reduce dimensionality, where the original vari-
ables are replaced by a smaller number of derived vari-
ables, the principal components (linear combinations of
the original variables). We applied PCA to the concate-
nated representations of all target tokens in the datasets (cf.
“Datasets and Evaluation” section)®. We tuned the dimen-
sionality of the PCA word-vectors in RG, yielding the best
result with 300 dimensions. PCA can be seen as the lower-
dimensionality representation of CAT.

Canonical Correlation Analysis (CCA) also explores lin-
ear correlations, but in this case between two sets of multidi-
mensional variables. As mentioned in the related work, CCA
has been already used to combine different word represen-
tations (Faruqui and Dyer 2014), who used it to incorporate
evidence from two language corpora.

In our case, the two representations have overlapping vo-
cabulary, and thus we apply CCA® to maximize the correla-
tion for the two vectors of the same token in the projected
space. We tuned the dimensionality of the projected space
and the two projection possibilities (project the text repre-
sentations on the shared space, or the WordNet-based repre-
sentations on the shared space) on the RG dataset, achiev-
ing the best results for 180 dimensions when projecting the
WordNet-based representations.

Corpus combination

Given that both our text-based representation and WordNet-
based representations use corpora (text corpora in one case,
automatically generated pseudo-corpus in the second case),
we can shuffle the two corpus and then use the distribu-
tional vector to obtain a single representation (COR). We
combined both corpora, without tuning any parameter.

8http://finzi.psych.upenn.edu/R/library/
mdatools/html/pca.html
‘http://cs.cmu.edu/~mfaruqui/soft .html

Result combination

This method combines the similarity scores for each word
representations. Given the cosine similarity values of the two
representations, the combined similarity will be the average
of the two values (AVG). In another variant, we first order
the pairs in the dataset according to the similarity values in
ascending order, and then average the ranks (RNK). The mo-
tivation for combining ranks is that Spearman is the main
evaluation measure used in word similarity, and Spearman
disregards the actual values and computes the correlation
based on the relative rank of the values. Note that, in these
cases,the representations are not combined.

Experiments

In order to evaluate word representations, we decided to fol-
low the large body of literature on word similarity and re-
latedness (Agirre et al. 2009). The similarity of two words
was calculated as the cosine between the respective word
representations, except for the complex number CMP com-
bination, where we use the complex vector cosine similarity
(Scharnhorst 2001).

Datasets and Evaluation

We have used several popular datasets for evaluation.
The first three are similarity datasets: RG (Rubenstein
and Goodenough 1965) and SimLex999 (SL) (Hill, Re-
ichart, and Korhonen 2014) and WordSim353 Similarity
(WSS) (Agirre et al. 2009). The other four are relatedness
datasets: WordSim353 Relatedness (WSR) (Agirre et al.
2009), MTURK287 (MTU) (Radinsky et al. 2011), MEN
(Bruni, Tran, and Baroni 2014) and the full WordSim353
(WS) (Gabrilovich and Markovitch 2007). In addition, we
report the average for the similarity datasets (RG, SL, WSS)
and the relatedness datasets (WSR, MTU, MEN). Given the
fact that WSS and WSR are subsets of WS, we use WSR
when averaging relatedness, WSS for similarity and the full
WS when averaging all. The evaluation measure computes
the rank correlation (Spearman) between human judgments
and system values, as customary. We performed significance
tests using Fisher’s z-transformation (Press et al. 2002, equa-
tion 14.5.10).

Combining text-based and WordNet-based
embeddings

In our first experiment, Table 1 reports the results of our
WordNet-based representations (RWwn, first row) with text-
based embeddings (WBU, second row) and the combina-
tions. The results show that both methods perform a la par
for relatedness-based datasets, and that WordNet enables
better results in similarity.

More importantly, the table reports the gain with respect
to WBU for each combination technique. CAT and PCA
over the concatenated representations outperform all other
techniques on similarity, relatedness and overall, followed
by AVG and COR. The rest perform lower, with RNK and
CMP underperforming the text-based embeddings. Special
mention goes to CCA, which, contrary to the work on mul-
tiple language embeddings (Faruqui and Dyer 2014), shows



RG SL WSS|WSR MTU MEN| WS |sim rel all
RWwn|82.3 52.5 76.2|58.7 62.1 75.4|68.7|70.3 65.4 68.2

WBU [76.4 39.7 76.6 615 64.6 74.6 [67.3[64.2 66.9 64.5

CAT| 7.8 125 67 | 65 75 6.0 [8.0|9.0 6.7 84
CEN| 46 96 27 |-11 13 32 |23|56 12 42
CMP|-34 -12 -29|-89 -74 -09|-69|-25 -57 -4.0
PCA|10.8 125 57 | 53 83 56 |69]9.6 65 8.9
CCA| 6,8 2,7 -04]-02 11,7 -6,1 [-35]/6,0 -33 23
COR| 66 82 72|88 33 41 (86|74 54 6.2
AVG| 8.0 121 55|65 70 62 |74|85 66 82
RNK| 73 11.3 0.2 |11.7 -14.7 -147]| 6.6 | 6.2 -59 -0.8

Table 1: Results as Spearman for WordNet-based represen-
tations (RWwn, firs row), skipgram on text corpora (WBU,
second row), and the absolute gain with respect to WBU
when combined with WordNet-based representations (rest
of rows). Leftmost columns for single datasets, and right-
most for averages across similarity, relatedness and all
datasets. Best results in each column in bold. Regarding the
“all” column, PCA, CAT and AVG are significantly better
than the rest (99% confidence level), but not among them-
selves (even at 95% confidence level).

a weak improvement, even if the larger improvements with
CAT show that the two representations are complementary.

PCA slightly outperforms CAT with just 300 dimensions
instead of 600, showing that some of the dimensions are lin-
early correlated, at least for these datasets. It also shows that
it is possible to produce a compact, 300-dimension space
which is much more effective than the original text-based
and WordNet-based representations, which also have 300 di-
mensions.

Comparison to retrofitting

The comparison to retrofitting (Faruqui et al. 2015) de-
serves some more attention. Retrofitting included experi-
ments infusing knowledge from WordNet, among others.
The method converts the knowledge into a flat list of related
words, that is, for each word in the vocabulary, a list of simi-
lar or closely related words is given as input to the algorithm.
The algorithm then tweaks the original vectors of related
words so they are close to each other. In their work, they
extracted synonymy and hypernymy relations from Word-
Net (WNgy), getting better results when using both relations.
As our WordNet-based method uses additional relations, in-
cluding gloss relations from WordNet, we produced an ad-
ditional list of closely related words (WNg;)'?, where, for
each target word, we list all words with a direct relation in
WordNet.

The top three rows in Table 2 shows that retrofitting
all relations in WordNet (+WN,;;) to the embeddings used

!Note that in the retrofitting paper, the authors refer to the use
of synonyms and hypernyms as WN,;;, while in this paper we do
use all relations in WordNet, including part-of, gloss relations, etc.
Their WNy;; is thus our WNyy,.

RG SL WSS|WSR MTU MEN| WS |sim rel all
FAR |74.8 43.7 74.1|61.0 69.9 68.0|65.6/64.2 66.5 64.4
+WN,,| 50 74 40 |-11 06 26 19|55 03 33
+WNy ;|49 25 26|43 24 57 (37|33 41 39
WBU |76.4 39.7 76.6|61.5 64.6 74.6 |67.3/64.2 66.9 64.5
+WN,, | 46 -122 -48|-186 80 -49 |-2,7|26 -43 13
+WN, |63 09 23102 24 09 09|37 03 21
PCA 108 125 57 | 53 83 56 [69]|9.6 65 89

Table 2: Results as Spearman for the embeddings used in
(Faruqui and Dyer 2014) (FAR, top row), and the abso-
lute gain when using retrofitting to combine two varieties
of WordNet information (+WN;, and +WN,;;). We also in-
clude the results for skipgram on text corpora (WBU), and
the respective retrofitting gains. We show our combined re-
sults again (PCA) for easier comparison. Best results in each
column in bold. Regarding the “all” column, FAR+WN,;
and FAR+WNy;, are significantly better than FAR (99%
confidence level), but WBU+WN,;; and WBU+WNy;, are
not significantly better than WBU (even at 95% confidence
level), which shows that retrofitting is only able to weakly
profit from WordNet information. On the other hand, PCA
is significantly better than all other results (99% confidence
level).

in (Faruqui et al. 2015)'!" produces slightly better results
than using synonymy and hypernymy alone (+WNy,), with
worse results on similarity and better results on relatedness.
This makes sense, as synonymy and hypernymy are linked
to similarity, and gloss relations to relatedness (Agirre et al.
2009).

The other rows in Table 2 show the gains of retrofitting
when applied on our WBU embeddings. The gains here
are smaller, perhaps because of the different techniques and
parameters used to produce the text-based embeddings'?.
In any case, both synonyms and hypernyms (+WNj) and
all relations (+WN,;;) produce improvements, with slightly
higher results when using all relations. Still, the gain is small
compared to the gains obtained when combining our repre-
sentations, which obtains the best results across all datasets.

The higher results of our combination can be due to the
fact that the WordNet-based embeddings are able to cap-
ture better the nuances of words and senses, as well as the
fact that random walks capture relations and similarities of
words beyond direct relations. Retrofitting, in contrast, mod-
els only direct relations between words.

For instance, the word pair physics-proton is given a high
relatedness value in WS (8.12 out of 10), being the 45th most
related pair in the dataset (rank 45), with pair tiger-tiger
having 10 and being the the most related pair (rank 1)'3.

""The authors use the word2vec embeddings available in
https://code.google.com/p/word2vec/

12Similar variability is reported by the authors of the retrofitting
paper.

3We will refer to the rank in the dataset in order to compare the
similarity values returned for each representations, as the absolute
values might not be directly comparable. In addition, the evaluation



RG SL WSS|WSR MTU MEN| WS
txtf — — — | — 692 — |744

CLEAR gain| — — — | — 05 — |23
txt|71.2 34.5 76.8 | 60.1 59.1 71.4 |68.0

MVLSA gain| 9.6 94 24 | 34 38 44 |21
txtf — — — | — —  — 647

FREEBASE gain| — — — | — — — |37

Table 3: Results as Spearman for additional work which en-
riches text-based embeddings. For each technique, we report
the text-only embeddings (txt) and the gain when adding
other information sources, see text for more details.

There is no direct relation between this pair in WordNet,
but the WordNet-based embeddings assign it a large value
(rank 41), with the CAT combination also ranking it high
(rank 42), even if the text-based WBU would rank them low
(rank 170). Retrofitting cannot make this pair any closer, as
it has no access to the fact that they are indirectly related in
WordNet. In fact, retrofitting makes this pair rank even lower
than WBU (rank 193), perhaps because other relations make
move them apart.

On the negative side, retrofitting is able to include simple
information like that from PPDB, which just lists paraphrase
probabilities for word and phrase pairs. In fact, (Faruqui
et al. 2015) reported improvements when retrofitting with
PPDB. In our case, it is necessary to first produce full-
fledged embeddings for each resource (e.g. PPDB) and then
combine. We tried to do that using PPDB, but failed to pro-
duce meaningful representations.

Comparison to other combinations

Table 3 shows the results for other techniques that add
knowledge from external resources into text embeddings (cf.
related work section). We already reported on retrofitting,
and we thus focus on CLEAR (Halawi et al. 2012) and
Multiview LSA (Rastogi, Van Durme, and Arora 2015)
(MVLSA for short). CLEAR used as a baseline the re-
sults yielded by training their own text-based distribu-
tional model with the Yahoo! Answers corpus'* in 100-
dimensional space. We chose the best reported results when
applying WordNet restrictions, in the form of pairs of syn-
onyms, hypernyms, and meronyms.

(Rastogi, Van Durme, and Arora 2015) trained the English
part of the Polyglot Wikipedia dataset released by (Al-Rfou,
Perozzi, and Skiena 2013) with their LSA-based model mul-
tiview model using 300 dimensions. They used WordNet in
addition to other information sources.

In these cases, the results between systems are not directly
comparable, as the different research works use both a dif-
ferent baseline text-based representation and a different sub-
set of WordNet relations. Still, the fact that we obtain the
largest absolute gain in all datasets is an indication that our
alternative approach is worth following.

is performed using Spearman, which is based on ranks.
"*http://webscope.sandbox.yahoo.com/

In a different strand of work, (Tian et al. 2015) infuses
information from relations in Freebase into text-based em-
beddings (FREEB). Again, an approximate comparison can
be made. The information used is somehow comparable to
WBU, with Freebase relations closely related to the relations
in Wikipedia (which we used, in addition to hyperlinks, to
produce Wikipedia embeddings, as described in the “Com-
bining more than two sources” section). For comparison’s
sake, we combined WBU and these embeddings, obtaining
a gain of 4.6 (on top of the 64.5 for WBU), exhibiting higher
gain and higher total performance.

Combining more than two sources

Given the good results when combining two word represen-
tations, we explored the combination of several other word
representations.

Additional word representations

Regarding text-based embeddings, in addition to WBU word
representations, we downloaded the representations which
were released by the word2vec authors'> (GOOG for short).
These vectors had been trained on the Google News cor-
pora, about 100 - 109 tokens, using a different but related
NNLM called CBOW, with the following parameters: vec-
tor size 300, 3 negative samples, sub-sampling threshold of
10~° and window size of 5 words. These vectors have been
built using a larger corpus, but the parameters have not been
optimized on word similarity tasks. The fact that they use
a different corpus make them complementary to WBU vec-
tors.

Regarding random walk based embeddings, we decided to
apply them to the Wikipedia graph described in (Agirre, Bar-
rena, and Soroa 2015) which is publicly available. V' con-
sists of all Wikipedia pages except redirect, disambiguation
and category pages. The Wikipedia graph includes a edges
between pages al and a2 if and only if there exists a link
from al to a2 and from a2 to al. This KB is formed with
2.955.154 nodes (articles) and 16.338.664 edges (links). We
ran random-walks for 5.6 - 108 restarts, producing a corpus
of 4.4 - 10° tokens. We did not optimize any parameter, ex-
cept the number or restarts, which we run until convergence
on RG.

Finally, we used high-dimensional word representations
produced with Personalized PageRank (Agirre, de Lacalle,
and Soroa 2014), as implemented by UKB, which is publicly
available'®. We used word representations produced from
the WordNet and Wikipedia graphs that we just mentioned
(PPwn and PPwiki, for short). We ran UKB out-of-the-box,
with the default damping value of 0.85. Contrary to RWwn
and RWwiki, these word representations have as many di-
mensions as vertices in the graph, 117 - 103 for PPwn and
3 - 10 for PPwiki.

Combinations

The goal of this experiment is to explore whether simple
combination techniques can be used to combine a relatively

Bhttps://code.google.com/p/word2vec/
¥http://ixa2.si.ehu.eus/ukb



RG SL WSS|WSR MTU MEN| WS |sim rel all
(a) WBU  |76.4 39.7 76.6 | 61.5 64.6 74.6 |67.3|64.2 66.9 64.5
(b) GOOG |76.0 442 77.8|60.0 65.5 74.6 |68.1/66.0 66.5 65.6
(c) RWwn [82.3 52.5 76.2|58.7 62.1 75.4 |68.7|70.3 65.4 68.2
(d) PPVwn |85.7 49.3 69.4 | 44.1 54.5 66.1 |56.9/68.1 54.9 62.5
(e) RWwiki [79.6 32.3 67.5|48.2 439 60.9 |59.3|59.8 51.0 55.2
(f) PPVwiki|88.6 29.2 80.7 | 62.1 64.5 74.1 |72.7|66.2 66.9 65.8
CAT(ac) 84.2 522 83.3|68.0 72.1 80.6|75.3|73.2 73.6 72.9
CAT(ace) [91.2 51.4 80.4|64.0 664 784 |73.6|74.3 69.6 72.2
CAT(abce) [91.2 51.6 80.7 | 64.2 66.7 78.6 |73.8|74.5 69.4 72.4
AVG(ac) (84.451.7 82.1|68.0 71.6 80.8|74.7|72.8 73.5 72.7
AVG(ace) |89.5 52.6 824|682 71.2 81.4(759|74.8 73.6 74.1
AVG(abce) [89.0 52.1 83.5|68.2 734 81.7|76.5|74.9 74.4 74.5

AVG(-f) 89.4 54.1 84.0|68.6 73.7 82.1|76.9|75.8 74.8 75.2
AVG(-e) 86.4 53.8 83.8|69.3 74.0 81.8 |76.3|74.6 75.0 74.4
AVG(-d) 89.9 529 84.0| 68.8 73.5 82.0|77.1|75.6 74.7 75.1
AVG(-c) 89.6 51.4 83.9|66.8 70.8 80.6|76.2|75.0 72.7 73.3
AVG(-b) 89.9 553 83.7|69.1 71.6 82.0|77.0|76.3 74.3 75.2
AVG(-a) 90.4 56.6 83.2|62.7 71.8 81.6|77.1|76.8 72.0 75.5

AVG(ALL) |90.2 54.7 84.3|69.1 73.7 82.8 |77.4|76.4 75.1 75.7
s-0-t-a 86.0 552 80.0| 70.0 75.1 80.0 |85.0\73.7 75.0 76.3

Table 4: Table showing Spearman performance of single
word representations (top rows) and selected combinations
using CAT and AVG, including ablation (-x meaning all rep-
resentations except x) and all methods (ALL). Last row for
state-of-the-art. Leftmost columns for single datasets, and
rightmost for averages across similarity, relatedness and all
datasets. Bold for best results among our combinations, ital-
ics for best result for state-of-the-art.

large number of complementary word representations. Due
to different dimensionality (e.g. 300 vs. thousands), and the
large number of possible combinations, we tried the simple
combinations CAT and AVG, but limiting CAT to vectors
with the same dimensionality'”.

The top rows in Table 4 show the performance of each
word representations in isolation. The best relatedness re-
sults are for Wikipedia-based PPV, while the best overall
and similarity results are for embeddings of random walks
over WordNet.

The following rows in the table show the best results for
CAT for each number of systems. While CAT is very effec-
tive when combining 2 sources, it fails to improve results
with more sources, as 3-way and 4-way combinations per-
form lower than the best 2-way combination.

We also show some selected combinations for AVG,
which include the same representations as shown for CAT,
ablation results, and results when all are combined. Al-
though AVG underperforms CAT in 2-way combinations,
the more sources it combines the better it performs. In fact,
the best results are obtained when averaging over all six
methods. The ablation results show that all methods con-
tribute to overall performance, as removing any method
from the 6-way combination reduces performance (ablation
rows and ALL row in Table 4).

17Preliminary results showed that the results with vectors of dif-
ferent dimensionality were very poor.

Finally, the last row shows the best reported results in
each of the datasets, as follows: RG (Hassan and Mihalcea
2011), SL (Goikoetxea, Soroa, and Agirre 2015), WSS (Ba-
roni, Dinu, and Kruszewski 2014), WSR (Baroni, Dinu, and
Kruszewski 2014), MTU (Halawi et al. 2012), MEN (Bruni,
Tran, and Baroni 2014), WS (Halawi et al. 2012). Our com-
bined system improves over the state-of-the-art in RG, SL,
WSS and MEN. Note that the sim, rel and all for the last row
correspond to the average of each of the best systems (i.e. a
non-existing system), and still, our combined system beats
them on similarity, equals them in relatedness and attains
the same results overall, showing that simple combinations
of independently learned representations are a promising av-
enue of research.

Conclusions

In this paper, we show that a simple concatenation of inde-
pendently learned embeddings outperforms more complex
combination techniques in word similarity and relatedness
datasets. The key insight is that a dedicated method based
on random walks over WordNet is able to represent Word-
Net information better than lists of restrictions, as used in
retrofitting and other methods. The high performance of sim-
ple combinations seems to be enabled by the complemen-
tarity of corpus-based and WordNet-based embeddings. In
addition, we show that simple averaging of six word repre-
sentations yields results beyond the state-of-the-art in some
of the datasets. All software and data are publicly available,
as well as WordNet-based and concatenated embeddings for
all words. '8

With respect to methods which try to fold-in informa-
tion from knowledge-bases into the representation learn-
ing method, our results seem to point to an alternative
route. Independently learning representation models for rich
knowledge-base like WordNet seems to be an interesting re-
search direction, as well as researching on more complex
combination methods which are based on independently
learned vector spaces.
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