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Abstract

We describe a concept-based event-mining
system that maximizes information ex-
tracted from text and is not restricted to
predefined knowledge templates. Such
a system needs to handle a wide range
of expressions while being able to ex-
tract precise semantic relations. The
system uses simple patterns of linguis-
tic and ontological constraints that are
applied to a uniform representation of
the text. It uses a generic ontology
based on DOLCE and wordnets in dif-
ferent languages to extract events from
text in these languages in an interopera-
ble way. The system performs unsuper-
vised domain-independent event-mining
with promising results. Error-analysis
showed that the semantic model and the
mapping of text to concepts through word-
sense-disambiguation (WSD) are not the
main cause of the errors but the complex-
ity of the grammatical structures and the
quality of parsing. Using the same seman-
tic model and their cross-wordnet links,
our English event-mining patterns were
transferred to Dutch in less than a day’s
work. The platform was tested on the envi-
ronment domain but can be applied to any
other domain.

1 Introduction

Traditionally, Information Extraction (IE) is the
task of filling template information from previ-
ously unseen text which belongs to a predefined
domain (Peshkin and Pfeffer, 2003). Standard
IE systems are based on language-specific pattern
matching (Kaiser and Miksch, 2005), consisting
of language specific regular expressions and asso-
ciated mappings from syntactic to logical forms.

The major disadvantage of traditional IE systems
is that they focus on satisfying precise, narrow,
pre-specified requests e.g. all names of directors
of movies. Compared to full text indexes in In-
formation Retrieval (IR), IE systems only cover a
small portion of the knowledge in texts while cap-
turing deeper semantic relations.

Alternatively, the KYOTO system1 combines
the comprehensiveness of IR systems with the
depths of IE systems. Furthermore, the system can
be applied to different languages and domains in
an uniform way. It tries to extract any event and
its participants from the text, and relate them to
time and place. To achieve this, it uses a full text
representation format and a wide range of knowl-
edge in the form of wordnets and a generic on-
tology (Vossen and Rigau, 2010). Word-sense-
disambiguation (WSD) is a crucial step to map text
to concepts. We implemented a two-phased WSD
strategy and show the effects on event-extraction.
We first apply a state-of-the-art WSD to words in
context, scoring all possible synsets in a wordnet.
Each of these synsets is mapped to a shared on-
tology. From this mapping, all possible ontolog-
ical implications are derived. Next, the mining
system extracts all possible interpretations of all
sequences of ontological concepts that match the
patterns. In the second-phase, we select an inter-
pretation only if there is a choice using the WSD
score. The system has been tested on texts from
the environment domain. However, the knowledge
resources and patterns are generic and can be ap-
plied to any other domain.

In the next section, we describe the general ar-
chitecture of the KYOTO system and the knowl-
edge structure. In section 3, we describe the mod-
ule for mining knowledge from the text. In sec-
tion 4, we describe the evaluation results and an
error-analysis for English. Since the profiles use

1Available at http://www.kyoto-project.eu/



<kaf xml:lang="en" doc="example1">
<text>
<wf page="1" sent="40" wid="w267" fileoffset="6,11">

water</wf>
<wf page="1" sent="40" wid="w268" fileoffset="12,21">

pollution</wf>
<...>

</text>
<terms>
<term id="t241" lemma="water" pos="N">

<span><target id="w267"></target></span>
<externalReferences>

<externalRef conf="0.29" ref="14845743-n"
resource="wn30g"/>

<externalRef ref="Kyoto#water"
reftype="sc_equivalenceOf" resource="ontology"/>

<!--...-->
<externalRef reftype="SubClassOf"
reference="DOLCE-Lite.owl#endurant"
status="implied"/>

<!--...-->
</externalReferences>

</term>
<term tid="t242" lemma="pollution" pos="N" type="open">

<span><target id="w268"></target></span>
<externalReferences>

<externalRef conf="0.33" ref="14516743-n"
resource="wn30g"/>

<externalRef ref="Kyoto#contamination_pollution"
reftype="sc_equivalenceOf" resource="ontology"/>

<!--...-->
<externalRef reftype="SubClassOf"
reference="DOLCE-Lite.owl#perdurant"
status="implied"/>
<!--...-->

</externalReferences>
</term>
</terms>
<!-- Additional layers (chunking, dependencies, ...) -->
</kaf>

Figure 1: Example of a KAF document

language-neutral ontological constraints, they can
be easily transferred to another language. There-
fore in section 5, we describe how the system was
transferred from English to Dutch, through the
wordnet-equivalence links.

2 KYOTO overview

The KYOTO system starts with linguistic pro-
cessors that apply tokenization, segmentation,
morpho-syntactic analysis and semantic tagging of
the text. The semantic tagging involves detection
of named-entities and the meaning of words ac-
cording to a given wordnet. The output of the lin-
guistic processors is stored in an XML annotation
format that is the same for all the languages, called
the KYOTO Annotation Format (KAF, (Bosma et
al., 2009)). KAF is compatible with the Linguistic
Annotation Framework (LAF, (Ide and L.Romary,
2003)). In KAF, words, terms, constituents and
syntactic dependencies are stored in separate lay-
ers with references across the structures. All
modules in KYOTO draw their input from these
XML structures. Likewise, WSD is done on the
same KAF annotation in different languages and

Figure 2: System Architecture

is therefore the same module for all the languages
(Agirre and Soroa, 2009). The current system
includes processors for English, Dutch, Italian,
Spanish, Basque, Chinese and Japanese. Figure
1 shows a simplified example of a KAF struc-
ture with the two basic layers: <text> layer (tok-
enization, segmentation) and <terms>, containing
morpho-syntactic and semantic information drawn
from WordNet and the KYOTO ontology for the
words water and pollution.

In KYOTO, the knowledge extraction is done by
so-called Kybots (Knowledge Yielding Robots).
Kybots are defined by a set of profiles represent-
ing information patterns. In the profile, concep-
tual relations are expressed using ontological and
morpho-syntactic patterns. Since the semantics is
defined through the ontology, it is possible to de-
tect similar data even if expressed differently. In
Figure 2, we show an example of a conceptual pat-
tern for the environment domain that relates organ-
isms that live in habitats. The pattern uses labels
from the central ontology, whereas each wordnet
synsets is directly or indirectly related to these la-
bels. Such a pattern can be used to extract events
from text, such as frogs that live in cropland in
France during the period 2000-2010.

The system exploits a 3-layered knowledge-
architecture (Vossen and Rigau, 2010), using a
central ontology, wordnets in different languages
and potential background vocabularies linked to
the wordnets. The ontology consists of around
2,000 classes divided over three layers (Hicks and
Herold, 2009). The top layer is based on DOLCE2

2DOLCE-Lite-Plus version 3.9.7



(Gangemi et al., 2003) and OntoWordNet. The
second layer are the Base Concepts3 (BCs) which
cover an intermediate level of abstraction for all
nominal and verbal WordNet synsets (Izquierdo et
al., 2007). Examples of BCs are: building, vehicle,
animal, plant, change, move, size, weight. A third
layer consists of domain classes introduced for de-
tecting events and qualities in a particular domain
(i.e. environment).

The semantic model also provides complete
mappings to the ontology for all nominal, ver-
bal and adjectival WordNet3.0 synsets (Fellbaum,
1998)4. The mappings also harmonize predi-
cate information across different part-of-speech
(POS). For instance, migratory events represented
by different synsets of the verb migrate, the noun
migration or the adjective migratory inherit the
same ontological information corresponding to the
ChangeOfResidence class in the ontology.

This generic knowledge model provides an ex-
tremely powerful basis for semantic processing
in any domain. Furthermore, through the equiv-
alence relations of wordnets in other languages
to the English WordNet, this semantic framework
can also be applied to other languages as shown in
Section 5.

The WSD module assigns concepts to each
word with a score based on the context. Onto-
logical tagging of the text is then the last step in
the pre-processing before the extraction of events.
For each synset associated to a word, we use the
wordnet to ontology mappings to look up its asso-
ciated ontological classes and inherited properties.
The Base Concept mapping guarantees that every
synset is mapped to an ontological class. Next,
we insert into KAF all the ontological implications
that apply to each concept. By making the implicit
ontological statements explicit, Kybots are able to
find the same relations hidden in different expres-
sions with different surface realizations, e.g.: wa-
ter pollution, polluted water, pollution of water,
water that is polluted directly or indirectly express
the same relations. Figure 1 shows how ontolog-
ical statements are represented in KAF as exter-
nal references related to synsets with a score from
the WSD (the value of the atribute conf). Words
in the term structure usually get many ontological
implications for each word meaning. The implica-
tions reflect subclass relations from the ontology

3http://adimen.si.ehu.es/web/BLC
4This knowledge model is freely available through the

KYOTO website as open-source data.

but also other relations such as events in which
the concept denoted by the word plays a role (e.g.
the word polluted water denotes water that plays
a role in the event pollution) or, the other way
around, the roles involved in the event denoted by
the word (e.g. the word water pollution denotes
events in which water is as a patient).

3 Event extraction

A set of abstract patterns called Kybots use
the central ontology to extract actual concept
instances and relations from KAF documents.
Event-mining is done by processing these abstract
patterns on the enriched documents. These pat-
terns are defined in a declarative format using
profiles, which describe general morpho-syntactic
and semantic conditions on sequences of KAF
terms (which are lemmas in the text). These
profiles are compiled to XQueries to efficiently
scan over KAF documents uploaded into an XML
database. These patterns extract the relevant infor-
mation from each match.

Figure 3 shows an example of a simple Kybot
profile. Profiles are described using XML syntax
and consist of three main parts:

• Variable declaration (<variables> element).
In this part, the search entities are defined,
e.g.: X (terms whose part-of-speech is
noun and whose lemma is not “system”),
Y (terms whose lemma is either “release”,
“produce” or “generate”) and Z (terms
linked to a subclass of the ontological class
DOLCE-Lite.owl#contamination pollution,
meaning being contaminated with harmful
substances).

• Relations among variables (<rel> element):
This part specifies the relations among the
previously defined variables, e.g.: Y is the
main pivot, variable X must precede variable
Y in the same sentence, and variable Z must
follow variable Y. Thus, this relation declares
patterns like ’X→ Y→ Z’ in a sentence.

• Output template: describes the output to be
produced for every match, e.g.: each match
generates a new event from the term Y and
two roles: the ’done-by’ role filled by term X
and ’patient’ role, filled by Z.

We created 261 generic profiles for English.
These profiles capture very simple sequences of
parts-of-speech or words, e.g. noun-verb or



<kprofile>
<variables>
<var name="x" type="term" pos="N" lemma="! system"/>
<var name="y" type="term"

lemma="produce | generate | release"/>
<var name="z" type="term"

ref="DOLCE-Lite.owl#contamination_pollution"
reftype="SubClassOf"/>

</variables>
<relations>
<root span="y"/>
<rel span="x" pivot="y" direction="preceding"/>
<rel span="z" pivot="y" direction="following"/>

</relations>
<events>
<event target="$y/@tid" lemma="$y/@lemma"

pos="$y/@pos"/>
<role target="$x/@tid" rtype="done-by"

lemma="$x/@lemma"/>
<role target="$z/@tid" rtype="patient"

lemma="$z/@lemma"/>
</events>
</kprofile>

Figure 3: Example of a Kybot profile

adjective-noun, where each word is restricted to
classes from the ontology, e.g. a motion event fol-
lowed by a geographical region. Note that it is
important that all possible expressions of relation
are modeled by the profiles.

4 Evaluation

4.1 Triplet representation for representing
events

The event structure in KYOTO is rather specific
and events can be complex, including many dif-
ferent roles and relations. Below is an example
of such a structure extracted from the sentence:
“Forests also absorb air pollution and retain up to
85 percent of the nitrogen from sources such as
automobiles and power plants.”
<event eid="e203" target="t4260"

lemma="absorb" pos="V"
synset="eng-30-01539633-v" rank="0.25"/>

<role rid="r280" event="e203" target="t4258"
lemma="forest" pos="N" rtype="done-by"
synset="eng-30-09284015-n" rank="0.15"/>

<role rid="r976" event="e203" target="t4262mw"
lemma="air pollution" pos="N" rtype="patient"
synset="eng-30-14517412-n" rank="1"/>

<role rid="r1609" event="e203" target="t4277mw"
lemma="power plant" pos="N" rtype="simple-cause-of"
synset="eng-30-03996655-n" rank="1"/>

<role rid="r276" event="e203" target="t4274"
lemma="automobile" pos="N" rtype="simple-cause-of"
synset="eng-30-02958343-n" rank="1"/>

To be able to compare our results with the out-
put of other systems and gold-standards, we de-
fined a more neutral and simple triplet format.

A triplet consists of:

• a relation

• a list of text token ids that represent the event

• a list of text token ids that represent a partic-
ipant

If an event has multiple participants, a separate
triplet is created for each event-participant pair.
The triplet identifier is used to mark which triplets
relate to the same event.

4.2 Evaluation results for English
We created a gold-standard in the triplet format.
An annotation tool that reads KAF and can assign
any set of tags to tokens in KAF was used to make
a gold-standard for a document about the Chesa-
peake Bay, a large estuary in the US5. The doc-
ument has 16, 145 word tokens. We manually an-
notated all relevant relations in 127 sentences, cor-
responding to 1, 416 tokens, 353 triplets and 201
events.

The first column in Table 2 show the annotated
relations.6 The patient relation is most frequent
(38%), followed by done-by (15%) and simple-
cause-of (14%).

As a baseline, we created triplets for all heads of
constituents in a single sentence according to the
constituent representation of the text in KAF. The
baseline generates 3, 427 triplets for the annotated
sentences. Since there is no relation predicted, we
assume the most-frequent patient relation.

To evaluate the Kybots, we used the 261 generic
profiles. The profiles generated 548 triplets for the
annotated sentences. In total 169 profiles or com-
binations of profiles (since multiple profiles can
propose the same triplet) have been applied to the
annotated fragment.

To measure the proportion of relevant events
that are detected by these heuristics, we compare
the baseline and Kybot events with the event to-
kens in the gold standard. The gold standard has
201 events and the baseline 1,627 events, of which
249 overlap with the gold standard events. This
results in a recall of 1.24 and a precision of 0.15.
The Kybot profiles detect 733 events, of which 209
are relevant. Recall is 1.04 and precision is 0.29.
Recall of events is similar to the baseline and pre-
cision is almost twice as high. The fact that the
recall is higher than 1 is caused by the fact that
the gold standard sometimes marks larger phrases
as a single event which may be separate events in

5The tool and evaluation data is available at the KYOTO
website

6The relations are taken from the DOLCE part of the KY-
OTO ontology. Please consult the DOLCE ontology for their
formal definition.



the baseline and the Kybot output. Both the base-
line and the Kybot profiles thus do not miss any
relevant events but do extract a substantial amount
of irrelevant events. The precision for the profiles
is still reasonable, given the fact that no relevance
ranking has been applied and only generic profiles
have been used. Note that events that are not an-
notated can still be proper events.

Table 1 shows the results for the triplet evalua-
tion of the relevant events.

Ignoring relations With relations
Baseline Kybots Baseline Kybots

Nr. correct 306 222 115 174
Precision 0.09 0.49 0.03 0.32
Recall 0.86 0.63 0.33 0.49

Table 1: Baseline and Kybot results

When ignoring the relation, recall for the base-
line is 86%, which shows that the baseline matches
a substantial part of the annotated triplets. It also
shows that 14% is missed. This is due to the fact
that the parser only marks one word as the head
in the case of a coordination of heads, e.g. in the
phrase “birds and fish” only “bird” is marked as
the head. Precision of the baseline is very low,
even when we ignore the relation itself. If we take
the patient relation as the default, we see that the
precision and recall drop even more. The Kybot
profiles clearly outperform the baseline in terms
of precision: 49% when ignoring the relation and
32% considering all relations. In terms of recall,
we see that 63% is covered when we ignore the
relation. This indicates that the profiles do con-
sider the majority of structures, but still miss 37%
of the structures. When we consider the relations,
recall drops to 49% which is still well above the
baseline.

4.2.1 Error analysis
We did a separate error analysis for recall and pre-
cision. First of all, we checked the 1,023 term
tokens of content words (nouns, verbs and adjec-
tives) that occurred in the 127 gold-standard sen-
tences. It turned out that there are 70 tokens with
the wrong POS assigned (7%). The major errors
are nouns and verbs interpreted as adjectives and
common nouns considered as proper names, most
notably “wetlands” and “wastewater” occurring 3
and 5 times respectively. If the wrong POS is as-
signed, the words cannot be found in WordNet
or the wrong synsets are assigned. In that case,
wrong or no ontological statements are inserted for
a word.

To analyze the recall in more detail, we looked
at the most-frequent missed relations: patient (48)
and done-by (30) (see Table 2).

Relation Gold % System Correct R. P. Missed

destination-of 27 7.65% 17 6 22 35 21
use-of 4 1.13% 1 1 25 100 3
generic-location 11 3.12% 22 8 72 36 3
source-of 4 1.13% 10 1 25 10 3
instrument 2 0.57% 0 0 0 0 2
product-of 2 0.57% 0 0 0 0 2
part-of 1 0.28% 3 0 0 0 1
purpose-of 7 1.98% 9 3 42 33 4
patient 133 37.68% 195 85 63 43 48
path-of 1 0.28% 0 0 0 0 1
result-of 4 1.13% 7 0 0 0 4
participant 0 0.0% 3 0 0 0 0
has-state 32 9.07% 42 11 34 26 21
state-of 22 6.23% 25 11 50 44 11
done-by 52 14.73% 89 22 42 24 30
simple-cause-of 51 14.45% 125 26 50 20 25

Total 353 100% 548 174 49 31 179

Table 2: Generic processing with 261 profiles dif-
ferentiated per relation

From the patient triplets, we missed 25% due to
parser errors, among which wrong-POS, missed
verb-particle combinations and multiwords. An-
other 15% of the patient triplets was not found be-
cause the parser does not provide detailed and re-
liable dependency information to distinguish be-
tween subjects and objects and the ontology does
not distinguish sufficiently between events with
participants that control the process (e.g. “to
swim”) and participants that do not (e.g. “to
flow”). Remarkably, only 4% of the errors are
due to a missing concept in WordNet or a wrong
mapping of WordNet to the ontology. Another 4%
could have been found by making more profiles.

In the case of the done-by relation, 30% of
the missed relations are the result of parser errors
(mainly coordination of NPs and VPs in which
only one is marked as the head) and another
30% because the structures of simple-cause-of and
done-by are the same and the ontology does not
provide sufficient information on the events to dis-
tinguish.

Precision errors are mostly caused by the fact
that patient, done-by and simple-cause-of are eas-
ily confused not only by the Kybots but also by
humans. The patient relation performs slightly
above average precision: 43% but done-by (24%),
simple-cause-of (20%) and has-state (26%) are
performing below average. Especially, the simple-
cause-of relation is decreasing the overall preci-
sion since it represents 125 triplets (15%). The
simple-cause-of relation applies to perdurants re-
lated to other perdurants. Due to the ambiguity in
English of nouns to denote either an endurant or



a perdurant, the system is likely to over-generate
this relation. The reverse holds for the done-by re-
lation. Both relations typically hold for the same
structures such as nouns in subject position of a
verb. Another common error that is related are
cases such as forest destroyed and houses built.
Since the parser does not provide information on
the inflection of the verbs nor on passive/active
form, the profile can only detect a noun+verb pat-
tern and assigns a done-by relation where a patient
relation should be assigned. Again, more informa-
tion from the parser in the KAF representation can
help here.

The main conclusion is that major improve-
ment both in recall and precision can be achieved
by better and more input from the linguistic pre-
processing, by richer ontological information e.g.
control of events, and by extending the number of
profiles. Furthermore, precision could also be im-
proved if we can resolve ambiguity between en-
durants and perdurants of nouns to distinguish for
example done-by from simple-cause-of. It thus
makes sense to consider the effect of WSD on the
precision of the mining. This is discussed in the
next section.

4.2.2 Effects of Word-Sense-Disambiguation
The generic processing considers all the possible
meanings of the words and does not take the WSD
into account.

To see the effect of the WSD, we implemented
a filter on the Kybot output that selects interpreta-
tions with the highest WSD score for each word
in the output that has multiple interpretations. By
interpretation we mean: being either an event or a
role or having different relations assigned. By ex-
cluding low scoring concepts only when there is a
choice to be made, we hope to capture as much re-
call as possible and to gain precision. Note that
the WSD scored a precision of 48% in the Se-
mEval2010 task on domain specific WSD, which
used documents from the same domain as KY-
OTO ((Agirre et al., 2010)). We set a threshold
for eliminating relations in proportion to the max-
imum WSD scores of each word. The results are
shown in Table 3. A threshold of 0 means that all
interpretations are considered, a threshold of 100
means only the highest scoring interpretations.

We can see that there is a positive correlation
between WSD threshold and precision, where pre-
cision increases from 32% to 39% using the high-
est WSD scores only. Recall drops from 49% to

WSD threshold #triplets #correct P. R. F1
0 548 174 0.32 0.49 0.39
10 500 169 0.34 0.48 0.40
20 479 167 0.35 0.47 0.40
30 470 167 0.36 0.47 0.41
40 461 166 0.36 0.47 0.41
50 446 164 0.37 0.46 0.41
60 434 164 0.38 0.46 0.42
70 429 162 0.38 0.46 0.41
80 427 161 0.38 0.46 0.41
90 426 161 0.38 0.46 0.41
100 377 148 0.39 0.42 0.41
manual 364 141 0.39 0.40 0.39

Table 3: Generic processing with different WSD
thresholds.

42%. We get the optimal settings using a thresh-
old for WSD of 60%. This gives an F-measure of
42%, for precision 38% and recall 46%.

We also applied a manual disambiguation of the
benchmark file. The results for the manually dis-
ambiguated file are shown in the last row. We can
see that less triplets are generated (364) but close
to the 100% WSD threshold (377). Remarkably,
the precision is the same as for 100% WSD while
recall is a bit less (40%). This shows that the er-
rors of WSD apparently do not have a big impact
on the extraction. For recall, it is thus better to
use less perfect WSD. This is inline with the er-
ror analysis in the previous section, which showed
that structural processing is more a problem than
the mapping of the text to concepts.

We also checked the effect of WSD on the ex-
traction of relevant events. Eliminating synsets
through WSD did not show any effect. Precision
remains the same (29%), and recall only drops
slightly from 104% to 97% when we limit the
events to 100% WSD threshold. In the case of
manual WSD, we do get a much higher preci-
sion (49%) and a bit lower recall (83%). This
clearly shows that the Kybots over-generate many
events due to the event-object ambiguity of words
in English. The fact that precision of the manually
tagged file is much less than the recall, also sug-
gest that relevance of extracted events is not con-
sidered by our system: even after manual (perfect)
WSD, the system detects events that are not anno-
tated. If we consider 49% of event detection as the
upper limit here, which seems reasonable, we can
say that the Kybots reach a precision of 60% of the
upper limit in detecting events.

4.2.3 Effects of selecting best performing
profiles

The profiles perform very differently in terms of
recall and precision. We therefore derived the



precision for each each profile, using the opti-
mal WSD setting of 60% of the maximum score.
We implemented a filter that checks every conflict
across triplets. If two triplets involve the same
events and roles but have a different relation, we
choose the triplet generated by the higher scoring
profile. The results are shown in Table 4. The
first row of the table shows the results for a WSD
threshold of 60% using 128 profiles. The remain-
ing rows show the results when this 60% WSD
output is post-filtered using profiles with precision
scores 1, 5, 10, 25, 50 and 75.

#profiles #triplets #correct P. R. F1
All profiles 129 434 164 0.38 0.46 0.42
profiles 1% 104 332 147 0.44 0.42 0.43
profiles 5% 103 312 147 0.47 0.42 0.44
profiles 10% 103 312 147 0.47 0.42 0.44
profiles 25% 93 284 141 0.50 0.40 0.44
profiles 50% 76 219 115 0.53 0.33 0.40
profiles 75% 22 46 32 0.70 0.09 0.16

Table 4: Generic processing with WSD threshold
of 60% and using best performing profiles.

We see a clear increase in precision and a drop
in recall, as expected. However, we also see an
increase in the F-measure from 41% to 44% us-
ing a subset of the profiles with higher precision.
Using profiles with a precision score of at least
25%, we obtain a precision of 50% and a recall
of 40%. With these settings, 90 profiles have been
used compared to 129 profiles using just the WSD
threshold of 60%. This shows that the set of pro-
files can be optimized for specific document col-
lections by annotating a proportion of the collec-
tion that is representative and deriving a precision-
score for the different profiles. Likewise, we can
pair style of writing to the type of relation ex-
pressed.

If we compare these results with the manually
annotated file in Table 3, we see that the best pro-
files have a much higher precision (50% against
39% manual) and the same recall. This again con-
firms that the challenge for getting more preci-
sion is in resolving the structural relations in the
text rather than assigning better concepts through
WSD.

5 Transferring Kybots to another
language

An important aspect of the KYOTO system is the
sharing of the central ontology and the possibil-
ity to extract semantic relations in different lan-
guages in a uniform way. To test the feasibility of

sharing the same semantic backbone and transfer-
ring Kybot profiles, we carried out a transfer ex-
periment from English to Dutch. We collected 93
Dutch documents on a Dutch estuary (the West-
erschelde) and related topics. We created KAF
files and applied WSD to these KAF file using the
Dutch wordnet data.

To apply the profiles to the Dutch KAF docu-
ments, we need to apply the ontotagger program
to the Dutch KAF. We created tables that match
every Dutch synset to the English Base Concepts
and to the ontology using the equivalence rela-
tions. We generated 145,189 Dutch synset to En-
glish Base Concept mappings (for comparison for
English we have 114,477 mappings) and 326,667
Dutch synset to ontology mappings (186,383 for
English). These ontotag tables were used to insert
the ontological implications into the Dutch KAF
files.

Next, we adapted the 261 English Kybot pro-
files to replace all English specific elements by
Dutch. This mainly involved:

• replacing English prepositions and relative
clause complementizers by Dutch equiva-
lents;

• adapting the word order sequences for rela-
tive clauses in Dutch;

• adapting profiles that include adverbials,
since they occur in different positions in
Dutch;

• eliminating profiles for multiword com-
pounds which mostly occur in Dutch as a one
word compound;

• eliminating profiles for explicit English struc-
tures that express causal relations;

We kept all the ontological constraints exactly
as they were for English. Only superficial syntac-
tic properties were thus changed. It took us half-a-
day to adapt the profiles for Dutch. From the orig-
inal 261 English profiles, we obtained 134 Dutch
profiles.

We ran the profiles on the 93 Dutch KAF files
(42,697 word tokens) and 65 profiles generated
output: 4,095 events and 6,862 roles. In terms
of relations, we see a similar distribution as for
English, as shown in Table 5. The patient rela-
tion is most frequent, followed by relations such as
generic-location, has-state and done-by. We did a



Relation # %
destination-of 10 0,15%
patient 2067 30,12%
path-of 23 0,34%
has-state 1236 18,01%
generic-location 396 5,77%
state-of 748 10,90%
source-of 669 9,75%
done-by 792 11,54%
part-of 87 1,27%
simple-cause-of 573 8,35%
purpose-of 261 3,80%
Total 6,862

Table 5: Relations extracted for Dutch documents.

preliminary inspection and the results look reason-
able. For instance, two frequent words denoting
events (the noun toename (increase) and the verb
stijgen (increase)) appear to have sensible patients
(number, activity, consumption, pollution, trade,
pressure, ground sea level, earth).

6 Conclusions

We described an open platform for event-mining
using wordnets and a central ontology that aims at
maximizing the information extracted from text.
The system uses a limited set of generic patterns
with structural and ontological constraints on ele-
ments from the text. We have shown that word-
nets can be used to map text to ontological classes
and extract events and participants from text. Our
error analysis showed that recall is mostly ham-
pered by the structural complexity of the text and
the incapability of the parser to handle this phe-
nomenon. The knowledge resources, wordnet and
the ontology, did not play a major role in recall.
However, precision of the event relations is more
affected by richness and quality of the semantics
analysis. We have shown that WSD has a positive
effect on the precision of the extracted relations
and that precision can be further optimized by tun-
ing the structural profiles to the genre of the target
text. The system can be easily transferred to any
language that has a wordnet connected to the En-
glish WordNet, as was shown for Dutch. In the fu-
ture, we want to further improve recall and preci-
sion using richer event data and machine learning
techniques and use the output for reconstruction of
relations between events. We will also experiment
with other parsers for English and Dutch to see the
effect on the quality.
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