
Exploring feature spaces with svd and unlabeled data
for Word Sense Disambiguation

Eneko Agirre
IXA NLP Group

Univ. of the Basque Country
Donostia, 20018
e.agirre@ehu.es

Oier Lopez de Lacalle
IXA NLP Group

Univ. of the Basque Country
Donostia, 20018

jibloleo@si.ehu.es

David Mart́ınez
IXA NLP Group

Univ. of the Basque Country
Donostia, 20018

davidm@si.ehu.es

Abstract

Current Word Sense Disambiguation systems
suffer from the lack of hand-tagged data, as
well as performance degradation when moving
to other domains. In this paper we explore three
different improvements to state-of-the-art sys-
tems: 1) using Singular Value Decomposition in
order to find correlations among features, trying
to deal with sparsity, 2) using unlabeled data
from a corpus related to the evaluation corpus,
and 3) splitting the feature space into smaller,
more coherent, sets. Each of the proposals im-
proves the results, and properly combined they
achieve the best results to date for the Senseval
3 lexical sample dataset. The analysis of the re-
sults provides further insights and possibilities
for the future.

1 Introduction

Many current Natural Language Processing (nlp)
systems rely on linguistic knowledge acquired
from tagged text via Machine Learning (ml)
methods. Statistical or alternative models are
learned, and then applied to running text. The
main problem faced by such systems is the sparse
data problem, due to the small amount of training
examples. Focusing on Word Sense Disambigua-
tion (wsd), only a handful of occurrences with
sense tags are available per word. For example,
if we take the word channel, we see that it oc-
curs 5 times in SemCor (Miller et al. 93), the
only all-words sense-tagged corpus publicly avail-
able: the first sense has four occurrences, the sec-
ond a single occurrence, and the other 5 senses
are not represented. For a few words, more ex-
tensive training data exists: The Lexical Sample
task of Senseval-2 (Edmonds & Cotton 01) pro-
vides 145 occurrences for channel, but still some
of the senses are represented by only 3 or 5 occur-
rences.

In addition to the sparse data problem, super-
vised wsd systems are usually trained and tested
in texts coming from the same corpus. When
training and testing instances come from distinct
sources with domain or genre differences, the per-

formance typically drops accordingly (Mart́ınez &
Agirre 00).

The impact of the above problems (sparsity and
domain shifts) is exemplified by the frustrating
handful of systems which are able to beat the sim-
ple Most Frequent Sense baseline in the realistic
all-words task in both Senseval-2 and Senseval-
3 (Snyder & Palmer 04). In these exercises the
best systems were trained over SemCor, and the
test texts came from The Wall Street Journal and
the Brown corpus.

One possible solution to the above problems
is to use unlabeled data and appropriate learn-
ing techniques that can take advantage of them.
Unlabeled data might alleviate the need of hand-
labeled data, and, in addition help to adapt the
system to new domains. Recently, there have
been several attempts in the wsd literature which
use co-training (Mihalcea 04) and Principal Com-
ponent Analysis (Su et al. 04). The results have
been mixed, with some improvements over base-
line supervised systems, but still below the best
purely supervised system in the Senseval lexical
sample tasks. An exception is (Gliozzo et al. 05),
which improves the best Senseval-3 results using
a combination of kernels and domain informa-
tion modeled with Singular Value Decomposition
(svd). This last system is closely related to ours,
and we will highlight the differences in the related
work section.

Alternatively, there is also the preoccupation
about the best way to apply ml techniques to
supervised settings. The first issue is to repre-
sent the context with appropriate features. The
last Senseval exercises show that the more feature
types one throws into the algorithm, the better
are the results (Agirre & Mart́ınez 04). Still, it is
not clear which is the best way to profit from the
very rich feature space. Apart from the sparsity
problem already mentioned, large feature spaces
tend to have highly redundant and heterogeneous
features (see Section 2.2). As a potential solution,

we interpret that svd (cf. Section 3.1) collapses
similar features (i.e. having similar distributions),
and will thus be helpful against sparsity and re-
dundancy. Regarding heterogeneity, splitting the
feature space might allow the learning algorithm
to better capture the patterns in the data.

In this paper we explore three different ways to
improve feature modeling:

• Using svd in order to find correlations among
features, trying to deal with sparsity.

• Using unlabeled data from a corpus related
to the evaluation corpus coupled with svd as
above.

• Splitting the feature space into smaller, more
coherent, sets, trying to better model the fea-
ture space.

These improvements need to be combined with
state-of-the-art ml algorithms. The methods
based on the spatial representation of features
(such as Support Vector Machines, Vector Space
Models and k-Nearest Neighbors) seem to be the
best performing, and we have focused on them
(cf. Section 2.3)

We will show that each of the modifications in
the feature space improves the results, and prop-
erly combined they achieve the best results to
date for the Senseval 3 lexical sample dataset.
The analysis of the results will provide further
insights and possibilities for the future.

The paper is structured as follows. Section 2
reviews the experimental setting and state-of-the-
art wsd systems that we used as baselines, includ-
ing the feature set and ml methods used. Section
3 introduces the improvements proposed in this
paper. Section 4 presents the results of these im-
provements. Section 5 introduces the combina-
tion method and its results. Section 6 presents
the discussion and related work. Finally, Section
7 draws the conclusions and the future work.

2 Experimental setting and baseline
systems

In order to organize the experiments we started
building state-of-the-art wsd systems based on
our previous experience (Agirre & Mart́ınez 04).
In the next sections we will present briefly the
main components of the wsd system, that is, the
features used to represent the context and the
ml algorithms applied. But we first describe the
target wsd task and the evaluation methodology.

2.1 Corpus and evaluation

The experiments have been performed using the
Senseval-3 English Lexical-Sample data (Mihal-
cea et al. 04). The source corpora was the
BNC (Leech 92). WordNet 1.7.1. (Fellbaum 98)
was chosen as the sense inventory for nouns and
adjectives, while the verb senses came from the
Wordsmyth dictionary1. 57 words (nouns, verbs,
and adjectives) were tagged, with 7,860 instances
for training and 3,944 for testing.

For the development and fine-tuning of our sys-
tems, we have used 3-fold cross validation over the
training set, where the three folds were built fol-
lowing stratified sampling. The final evaluation
and the comparison with other systems was made
over the testing set. The usual precision and re-
call figures were computed for each system. In all
the cases reported here coverage was 100% and
precision equalled recall, so we use recall in all
tables.

2.2 Features

The feature types can be grouped in three main
sets:
Local collocations: bigrams and trigrams
formed with the words around the target. These
features are constituted by lemmas, word-forms,
or PoS tags2. Other local features are those
formed with the previous/posterior lemma/word-
form in the context.
Syntactic dependencies: syntactic dependen-
cies were extracted using heuristic patterns, and
regular expressions defined with the PoS tags
around the target3. The following relations were
used: object, subject, noun-modifier, preposition,
and sibling.
Bag-of-words features: we extract the lemmas
of the content words in the whole context, and in
a ±4-word window around the target. We also
obtain salient bigrams in the context, with the
methods and the software described in (Pedersen
01).

2.3 ML methods

Given an occurrence of a word, the ml methods
below return a weight for each sense (weight(sk)).
The sense with maximum weight will be selected.

1http://www.wordsmyth.net/
2The PoS tagging was performed with the fnTBL

toolkit (Ngai & Florian 01).
3This software was kindly provided by David

Yarowsky’s group, from the Johns Hopkins University.

Each occurrence or instance is represented by the
features found in the context (fi).

For the Vector Space Model (vsm) method,
we represent each occurrence context as a vector,
where each feature will have a 1 or 0 value to in-
dicate the occurrence/absence of the feature. For
each sense in training, one centroid vector is ob-
tained (~Csk

). These centroids are compared with
the vectors that represent testing examples (~f),
by means of the cosine similarity function (eq.
(1)). The closest centroid assigns its sense to the
testing example.

weight(sk) = cos(~Csk
, ~f) =

~Csk
. ~f

|~Csk
||~f | (1)

Regarding Support Vector Machines (svm)
we utilized SVM-Light, a public distribution of
svm by (Joachims 99). The weight for each sense
is given by the distance to the hyperplane that
supports the classes, that is, the sense sk versus
the rest of senses.

The k Nearest Neighbor (k-nn) is a mem-
ory based learning method (eq. (2)), where the
neighbors are the k most similar contexts, repre-
sented by feature vectors (~ci), of the test vector
(~f). The similarity among instances is measured
by the cosine of their vectors (as in eq. (1)). The
test instance is labeled with the sense obtaining
the maximum the sum of the weighted vote of the
k most similar contexts. The vote is weighted de-
pending on its (neighbor) position in the ordered
rank, with the closest being first. Eq. (2) formal-
izes k-nn, where Ci corresponds to the sense label
of the i-th closest neighbor.

arg max
Sj

=
k∑

i=1

{
1
i if Ci = Sj

0 otherwise
(2)

3 Improvements for feature modeling

This section presents the three improvements that
we propose here as solutions to the data sparsity,
redundancy and heterogeneity problems. First,
we present the use of svd on the training and
test sets. Next, we introduce unlabeled data into
the svd procedure. Finally, we split the feature
space into two smaller sets.

3.1 Singular Value Decomposition (SVD)

svd is a technique to reduce the dimensions of
any problem represented by vectors. It has been

widely used in Text Categorization, being the ba-
sis of Latent Semantic Analysis. svd reduces
the dimensionality of the feature vectors, find-
ing correlations between features, and helping to
deal with data sparseness. We will review briefly
svd as we applied it to wsd.

Let C = {t1, t2, ..., tn} be a corpus (set of oc-
currences of target word), where ti is an instance
from the training set. Let F = {f1, f2, ..., fm} be
the features appeared in C, let M 3 Rm×n be a
feature-by-instance matrix representing C, where
tij ∈ M is the frequency of feature fi in instance
tj . Each word in the Lexical Sample has its own
M feature-by-instance matrix. Instead of the fre-
quency, one can try more sophisticated weighting
schemes, as we will see in Section 4.2.

svd decomposes the feature-by-instance matrix
(M) into the product of three matrices (eq. (3)):

M = UΣV T =
k=min{m,n}∑

i=1

σiuiviT (3)

U and V , row and column matrix, respectively,
have orthonormal columns and Σ is a diagonal
matrix which contains k eigenvalues in descend-
ing order. Note that in wsd problems the number
of instances is much lower than the number of fea-
tures (n << m), so k is always equal to the num-
ber of instances. By selecting the first p eigenval-
ues, we reduce the current space to p dimensions,
and can thus project the instances (both train-
ing and test) to a reduced space. The equation
(4) shows how to make this projection, where ~tT

is the transpose of the vector of features corre-
sponding to one occurrence of the target word.

~tp = ~tT UpΣ−1
p (4)

Once we project all training and testing in-
stances into the reduced space, we can apply
any ml algorithm as usual. svd has been per-
formed with SVDPACK4 and GTP5. vsm and
svm were fed with the results from SVDPACK
and k-nn with the results of GTP.

3.2 Singular Value Decomposition with
unlabeled data

The sense (label) of an instance is not used in
the process of doing svd. Taking advantage of
this, we can use unlabeled data to have a larger

4http://www.netlib.org/svdpack
5http://wwww.cs.utk.edu/∼lsi

matrix for each word, and hopefully obtain bet-
ter correlations in the reduced space. We have
used the BNC corpus to get large amounts of un-
labeled instances, and thus augment the feature-
by-instance matrix M from the previous section
into M ′. In our experiments we have tested differ-
ent amounts of unlabeled data, trying with 25%
or 50% of the occurrences of the word. We call
this process background learning.

Once we have done the svd decomposition of
M ′ we obtain the new U ′ and Σ

′−1
p , we project

training and testing instances as in eq. (4) and
proceed applying any ml method.

3.3 Splitting feature space

As seen in Section 2.2, wsd uses a high number of
heterogeneous features. The methods mentioned
in 2.3 are all based on geometrical properties of
the feature space. If we split the problem (the
whole space of features) into more coherent fea-
ture sets, the classification algorithms should find
easier its way in such a simple space. We can thus
build separate classifiers for each set of features,
and hopefully obtain better results.

In order to test this hypothesis we split the fea-
tures (cf. Section 2.2) in two subsets:

• Topical features: Comprising the bag-of-
word features.

• Local features: Comprising the local collo-
cations and the syntactic dependencies.

4 Preliminary results

In this section we describe the results of the sys-
tems presented in the previous sections: we first
comment the baseline methods, then some param-
eter tuning over svd, and finally the improved
algorithms.

4.1 Results of baseline methods

Initially we tried with k-nn, svm and vsm (sec-
tion 2.3). vsm has no parameters, but k-nn needs
to find an optimal k (number of neighbors) and
svm allows to optimize the “soft margin”. We
used 3-fold cross-validation on the Senseval-3 Lex-
ical Sample training set. For k-nn we only tried
two values: k = 5 and k = 4. For svm we used
the “soft margin” value obtained in previous ex-
periments.

Table 1 shows the results from cross-validation.
We can see that the results of vsm and k-nn are

Classifiers Recall
k-nn k=5 67.7
k-nn k=4 67.4
svm 62.3
vsm 68.0

Table 1: Results for baseline classifiers in 3-fold
cross-validation (Senseval-3 training set).

Classifiers Recall
k-nn k=5 70.5
svm 71.2
vsm 71.5

Table 2: Results for baseline classifiers in the
Senseval-3 Lexical Sample test set.

very similar, with vsm outperforming k-nn for 0.3
points, and svmperforming lower. For the rest
of the paper, we set k = 5 for all uses of k-nn.
The results on the test set are shown in Table 2,
with vsm increasing its advantage over k-nn and
svm in the middle of both.

4.2 Parameter setting for SVD

svd needs to set several parameters which can
affect the performance. In order to set those pa-
rameters we run several preliminary experiments
using svd coupled with k-nn using 3-fold cross-
validation as before. In the rest of the paper,
svd was performed using the following parame-
ters:

• Number of desired dimensions: We tried
with 100, 200, 300, 500 and 1000 dimensions,
and the best performance was obtained with
200 dimensions.

• Weighting scheme for the frequencies in
the feature-by-instance matrix: We tried dif-
ferent classic schemes, including local weight-
ing formulas such as term frequency (tf), log
and binary, and global measures like idf and
entropy. For this work we have used log and
entropy weighting scheme, replacing tij ∈ M
(cf. Section 3.1) by log(tij) · entropy(i).

• Threshold for global frequency (g): After
building the matrix we can remove features
that are very common (the less informative).
We tried with different thresholds, and finally
we chose to accept all features (g = 0).

Classifiers Recall
k-nn k=5 67.7
svm 62.3
vsm 68.0
k-nn-svd k=5 69.8
svm-svd 61.2
vsm-svd 63.9

Table 3: Results for k-nn and vsm with svd in
3-fold cross-validation (Senseval-3 training set).

k-NN (k = 5) Recall diff.
plain 67.7 —
local+topical 69.4 +1.7
svd 69.6 +1.9
svd (25% BNC) 69.2 +1.5
svd (50% BNC) 69.6 +1.9

Table 4: Improved k-nn classifier in 3-fold cross-
validation (Senseval-3 training set). Plain stands
for baseline k-nn.

Classifiers Recall diff.
plain 70.5 —
local+topical 70.8 +0.3
svd 70.7 +0.2
svd (25% BNC) 70.8 +0.2
svd (50% BNC) 71.2 +0.7
vsm 71.5 +1.0
svm 71.2 +0.7

Table 5: Improved k-nn classifier in the Senseval-
3 Lexical Sample test set. Plain stands for base-
line k-nn. vsm and svm results are also provided
for comparison.

4.3 Results of improved systems

In this section, we show how the proposed im-
provements affect the performance. Table 3
presents the results of doing svd, and then apply-
ing vsm, svm and k-nn over the reduced space.
We can observe that only k-nn improves perfor-
mance, with vsm and svm getting lower results.
These and other prior experiments motivated us
to only use k-nn on the improved systems.

Table 4 shows the results on the training set for
the baseline k-nn systems, as well as all improve-
ments explored. The difference over the baseline
system shows that all improvements were posi-
tive, raising from 1.5 to 1.9 the performance of the
baseline. Still, there is no improvement observed

when introducing unlabeled data into svd (25%
BNC and 50% BNC in Table 4) compared to using
labeled data only (svd in Table 4).

Table 5 shows the same data for all baseline
systems (including vsm and svm) on the test
set. The improvement here is lower but consis-
tent with Table 4. The only difference is that
using 25% or 50% of the BNC as unlabeled data
for svd is better than not using labeled data. Ta-
ble 5 also presents the results of the other two
baseline systems, showing that all k-nn systems
are below vsm and svm. This motivated us to try
to combine the k-nn classifiers.

5 Combining several k-NN systems

The results from the previous section show that
the improved systems (Section 3) are able to in-
crease the results of k-nn, but are still below our
svm and vsm baseline systems. The key observa-
tion here is that under each of the improved clas-
sifiers there is a slightly different feature space.
All of them provide improvements, and are there-
fore able to generalize interesting properties of the
problem space. If we are able to combine them
properly, we might be able to further improve the
results.

The combination of classifiers is an active area
of research. Here we exploited the fact that a k-
nn classifier can be seen as k points casting each
one vote, making easy a combination of several
k-nn classifiers. For instance, if we have two k-
nn classifiers of k = 5, c1 and c2, then we can
combine them into a single classifier equivalent to
k = 10. In order to carry through the properties
of each feature space, we decided to weight each
vote by the cosine similarity of that point instead
of the rank. We need to note that this combina-
tion method was also used in the previous section
to combine the local and topical classifiers.

Table 6 shows the results over the training
set. Plain stands for the baseline k-nn system.
The following rows show the improved systems
from the previous Section. Then the results of
combining the algorithms two by two are shown,
where each of the improved systems has been
combined with the baseline k-nn system. The
results show that all combinations attain better
results than any of their components. We can
also see that, in this setting, using unlabeled data
(plain+svd with 50%) improves slightly over not
using it (plain+svd). Finally, the full combina-

k-NN(k = 5) Recall diff.
plain 67.7 —
local+topical 69.4 +1.7
svd 69.6 +1.9
svd (25% BNC) 69.2 +1.5
svd (50% BNC) 69.6 +1.9
plain + local+topical 69.9 +2.2
plain + svd 70.7 +3.0
plain + svd (25% BNC) 70.7 +3.0
plain + svd (50% BNC) 70.8 +3.1
full combination 71.9 +4.2

Table 6: Results for different combinations of k-
nn classifiers in 3-fold cross-validation (Senseval-3
training set)

tion of all 5 systems provides the best results.
Note that for the full combination, we applied
svd (with only labeled data, plus 25% of BNC
and 50% of BNC) also to the local and topical
classifiers.

The results on the test set, Table 7, confirm
the cross-validation results. Note that unlabeled
data makes a more significant improvement over
plain+svd. Below the combined system, Table
7 also shows our baseline systems, as well as the
best system in the Senseval 3 competition and the
best reported result to date. The full combination
of our k-nn systems attains the best results of
them all.

6 Discussion and related work

The results show that we have been able to better
model the feature space. svd helps to find cor-
relations among the features, and thus alleviate
the sparse data and redundancy problems. In-
cluding unlabeled data provides very narrow per-
formance increases, but combined with the other
classifiers it makes a difference. Splitting the fea-
ture space in two and combining the two spaces
also improves the results. These improvements in
isolation are not very large. In fact, the resulting
k-nn systems are below our svm and svm base-
line systems for the original feature set. But when
we combine the k-nn algorithms over each of the
feature spaces, we attain the best results to date
in the Senseval-3 dataset.

We think that the reason explaining the ex-
traordinary performance of the combination is
that each of the changes in the feature space helps
finding regularities in the data that k-nn could

Classifiers Recall diff.
plain 70.5 —
local+topical 70.8 +0.3
svd 70.7 +0.2
svd(%25 BNC) 70.8 +0.2
svd(%50 BNC) 71.2 +0.7
plain + local+topical 71.5 +1.0
plain + svd 71.2 +0.7
plain + svd (25% BNC) 72.3 +1.8
plain + svd (50% BNC) 72.7 +2.2
full combination 73.4 +2.9
svm 71.2 —
vsm 71.5 —
Best S3 72.9 —
(Gliozzo et al. 05) 73.3 —

Table 7: Results for different combinations of k-
nn classifiers in the Senseval-3 Lexical Sample
test set. Plain stands for baseline k-nn. vsm and
svm results are also provided, as well as the best
Senseval-3 system and the best result published
to date.

not find before. When we combine each of the
simpler k-nn systems, we are looking for the word
sense that is closest to the target instance in as
many of the changed feature spaces as possible.

Some of the findings in this paper are confirmed
in related work, but this paper integrates them in
a single task (wsd) and shows that they provide
the best performance. For instance, (Kohomban
& Lee 05) show in a different wsd task that build-
ing separate k-nn classifiers from different subset
of features and combining them works better than
constructing a single classifier with the entire fea-
ture set. In (Gliozzo et al. 05), instead of splitting
the feature space and then combining the classi-
fiers, they use specialized kernels to model the
similarity for each kind of features. They also use
svd but only for bag-of-words features, while we
apply svd to all features. The good performance
of coupling k-nn and svd are well known in the
ml literature, e.g. (Thomasian et al. 05) on a im-
age retrieval task. (Dietterich 98) says that split-
ing features only works when the feature space
is higly redundant. We already mentioned in the
Introduction other works which make use of un-
labeled data on a wsd setting.

7 Conclusions and Future Work

In this paper we have explored feature model-
ing, trying to tackle sparse data, redundancy and
heterogeneity in the feature set. We have pro-
posed and evaluated three improvements: 1) us-
ing svd in order to find correlations among fea-
tures and deal with sparsity and redundancy, 2)
using unlabeled data from a corpus related to the
evaluation corpus in order to provide background
knowledge, and 3) splitting the feature space into
smaller, more coherent, sets. Each of the propos-
als improves the results for a k-nn classifier, and
properly combined they provide the best results
to date for the Senseval-3 lexical sample dataset.

In the discussion we have argued that this
improvements help to model better the feature
space, which, coupled with a ml algorithm well
suited for combination such as k-nn, explain the
good results. This opens new feature modeling
possibilities. In particular we are thinking of finer
splits of the feature space, using kernels to bet-
ter model similarity for certain features. On the
other hand we have shown that unlabeled data
helps, and we would like to better explore which
is the situation when the training and test data
come from distinct corpora or domains.

Acknowledgements

We wish to thank Basilio Seirra and Ana Zelaia, from

the University of Basque Country, for helping us with the

svd and k-nn methods. This research has been partially

founded by the European Commision (MEANING IST-

2001-34460), Ministry of Education and Science (CESS-

ECE HUM2004-21127-E) and the Basque Goverment (EU-

SEMCOR S-PE04UN10).

References
(Agirre & Mart́ınez 04) E. Agirre and D. Mart́ınez.

Smoothing and Word Sense Disambiguation. In Pro-
ceedings of EsTAL - España for Natural Language Pro-
cessing, Alicante, Spain, 2004.

(Dietterich 98) Thomas G. Dietterich. Machine-learning
research: Four current directions. The AI Magazine,
18(4):97–136, 1998.

(Edmonds & Cotton 01) P. Edmonds and S. Cotton.
SENSEVAL-2: Overview. In Proceedings of the Sec-
ond International Workshop on evaluating Word Sense
Disambiguation Systems., Toulouse, France, 2001.

(Fellbaum 98) C. Fellbaum. WordNet: An Electronic Lex-
ical Database. MIT Press, 1998.

(Gliozzo et al. 05) Alfio Massimiliano Gliozzo, Claudio
Giuliano, and Carlo Strapparava. Domain Kernels for
Word Sense Disambiguation. 43nd Annual Meeting of

the Association for Computational Linguistics. (ACL-
05), 2005.

(Joachims 99) T. Joachims. Making Large–Scale SVM
Learning Practical. In B. Schölkopf, C. J. C. Burges,
and A. J. Smola, editors, Advances in Kernel Methods
— Support Vector Learning, pages 169–184, Cambridge,
MA, 1999. MIT Press.

(Kohomban & Lee 05) Upali S. Kohomban and Wee S.
Lee. Learning Semantic Classes for Word Sense Disam-
biguation. In 43nd Annual Meeting of the Association
for Computational Linguistics. (ACL-05), University of
Michigan, Ann Arbor, 2005.

(Leech 92) G. Leech. 100 million words of English: the
British National Corpus. Languaje Research, 28(1):1–
13, 1992.

(Mart́ınez & Agirre 00) David Mart́ınez and Eneko Agirre.
One Sense per Collocation and Genre/Topic Variations.
Conference on Empirical Method in Natural Language,
2000.

(Mihalcea 04) Rada Mihalcea. Co-training and Self-
training for Word Sense Disambiguation. In In Proceed-
ings of the Conference on Natural Language Learning
(CoNLL 2004), Boston, USA, 2004.

(Mihalcea et al. 04) R. Mihalcea, T. Chklovski, and Adam
Killgariff. The Senseval-3 English lexical sample task.
In Proceedings of the 3rd ACL workshop on the Evalua-
tion of Systems for the Semantic Analysis of Text (SEN-
SEVAL), Barcelona, Spain, 2004.

(Miller et al. 93) G.A. Miller, C. Leacock, R. Tengi, and
R.Bunker. A Semantic Concordance. In Proceedings
of the ARPA Human Language Technology Workshop.
Distributed as Human Language Technology by San Ma-
teo, CA: Morgan Kaufmann Publishers., pages 303–308,
Princeton, NJ, 1993.

(Ngai & Florian 01) G. Ngai and R. Florian.
Transformation-Based Learning in the Fast Lane.
Proceedings of the Second Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, pages 40-47, Pittsburgh, PA, USA,
2001.

(Pedersen 01) T. Pedersen. A Decision Tree of Bigrams is
an Accurate Predictor of Word Sense. In Proceedings
of the Second Meeting of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL-01), Pittsburgh, PA, 2001.

(Snyder & Palmer 04) B. Snyder and M. Palmer. The
English all-words task. In Proceedings of the 3rd ACL
workshop on the Evaluation of Systems for the Semantic
Analysis of Text (SENSEVAL), Barcelona, Spain, 2004.

(Su et al. 04) Weifeng Su, Dekai Wu, and Marine
Carpuat. Semi-Supervised Training of a Kernel PCA-
Based Model for Word Sense Disambiguation. 20th
International Conference on Computational Linguistics
(COLING-2004), 2004.

(Thomasian et al. 05) A. Thomasian, Y. Li, and L. Zhang.
Exact k-NN queries on clustered SVD datasets. Infor-
mation Processing Letters (ILP), 94:247–252, 2005.

