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Abstract. This paper presents an algorithm to apply the smoothing techniques
described in [1] to three different Machine Learning (ML) methods for Word
Sense Disambiguation (WSD). The method to obtain better estimations for the
features is explained step by step, and applied to n-way ambiguities. The results
obtained in the Senseval-2 framework show that the method can help improve the
precision of some weak learners, and in combination attain the best results so far
in this setting.

1 Introduction

Many current Natural Language Processing (NLP) systems rely on linguistic knowledge
acquired from tagged text via Machine Learning (ML) methods. Statistical or alterna-
tive models are learned, and then applied to running text. The main problem faced by
such systems is the sparse data problem, due to the small amount of training examples.
Focusing on Word Sense Disambiguation (WSD), only a handful of occurrences with
sense tags are available per word. For example, if we take the word channel, we see
that it occurs 5 times in SemCor [2], the only all-words sense-tagged corpus publicly
available: the first sense has four occurrences, the second a single occurrence, and the
other 5 senses are not represented. For a few words, more extensive training data exists.
Senseval-2 [3] provides 145 occurrences of channel, but still some of the senses are
represented by only 3 or 5 occurrences.

It has to be noted that both in NLP and WSD, most of the events occur rarely, even
when large quantities of training data are available. Besides, fine-grained analysis of the
context requires that it is represented with many features, some of them rare, but which
can be very informative. Therefore, the estimation of rare-occurring features might be
crucial to have high performances.

Smoothing is the technique that tries to estimate the probability distribution that
approximates the one we expect to find in held-out data. In WSD, if all occurrences of
a feature for a given word occur in the same sense, Maximum Likelihood Estimation
(MLE) would give a 0 probability to the other senses of the word given the feature,
which is a severe underestimation. We will denote these cases as X/0, where X is the
frequency of the majority sense, and zero is the frequency of the other senses.

For instance, if the word Jerry occurs in the context of art only once in the training
data with a given sense, does it mean that the probability of other senses of art occurring
in the context of Jerry is 0? We will see in Section 4.3 that this is not the case, and that
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the other senses are nearly as probable. Our smoothing study will show for this feature
of the word art that the smoothed ratio should be closer to 1/1.

In this paper, we follow the smoothing method proposed by Yarowsky in his PhD
dissertation [1], and present a detailed algorithm of its implementation for the WSD
problem, defining some of the parameters used, alongside the account of its use by three
different ML algorithms: Decision Lists (DL), Naive Bayes (NB), and Vector Space
Model (VSM). The impact of several smoothing strategies is also presented, and the
results indicate that the smoothing method explored in this paper is able to make both
statistically motivated methods (DL and NB) perform at very high precisions, compara-
ble and in some cases superior to the best results attained in the Senseval-2 competition.
We also show that a simple combination of the methods and a fourth system based on
Support Vector Machines (SVM) attains the best result for the Senseval-2 competition
reported so far.

An independent but related motivation for this work is the possibility to use smooth-
ing techniques in bootstrapping approaches. Bootstrapping techniques such as [4] have
shown that if we have good seeds, it could be possible to devise a method that could
perform with quality similar to that of supervised systems. Smoothing techniques could
help to detect rare but strong features which could be used as seeds for each of the target
word senses.

The paper is organized as follows. Section 2 presents the experimental setting. Sec-
tion 3 introduces smoothing of feature types and Section 4 presents the detailed algo-
rithm with examples. Section 5 presents the results and comparison with other systems,
and, finally, the last section draws some conclusions.

2 Experimental setting

In this section we describe the target task and corpus used for evaluation, the type of
features that represent the context of the target word, and the ML algorithms applied to
the task.

2.1 Corpus

The experiments have been performed using the Senseval-2 English Lexical-Sample
data [3]. This will allow us to compare our results with the systems in the competition
and with other recent works that have focused on this dataset. The corpus consists on
73 target words (nouns, verbs, and adjectives), with 4,328 testing instances, and ap-
proximately twice as much training. We used the training corpus with cross-validation
to estimate the C parameter for the SVM algorithm, and to obtain the smoothed fre-
quencies for the features (see below). For the set of experiments in the last section, the
systems were trained on the training part, and tested on the testing part.

A peculiarity of this hand-tagged corpus is that the examples for a given target word
include multiword senses, phrasal verbs, and proper nouns. A separate preprocess is
carried out in order to detect those cases with 96.7% recall.
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2.2 Features

The feature types can be grouped in three main sets:
Local collocations: bigrams and trigrams formed with the words around the target.
These features are constituted by lemmas, word-forms, or PoS tags 1. Other local fea-
tures are those formed with the previous/posterior lemma/word-form in the context.
Syntactic dependencies: syntactic dependencies were extracted using heuristic pat-
terns, and regular expressions defined with the PoS tags around the target 2. The follow-
ing relations were used: object, subject, noun-modifier, preposition, and sibling.
Bag-of-words features: we extract the lemmas of the content words in the whole con-
text, and in a ±4-word window around the target. We also obtain salient bigrams in the
context, with the methods and the software described in [6].

2.3 ML methods

Given an occurrence of a word, the ML methods below return a weight for each sense
(weight(sk)). The sense with maximum weight will be selected. The occurrences are
represented by the features in the context (f i).

The Decision List (DL) algorithm is described in [1]. In this algorithm the sense
sk with the highest weighted feature f is selected, as shown below. In order to avoid 0
probabilities in the divisor, we can use smoothing or discard the feature altogether.

weight(sk) = arg max
f

log(
P (sk|f)

∑
j �=k P (sj |f)

) (1)

The Naive Bayes (NB) method is based on the conditional probability of each sense
sk given the features fi in the context. It requires smoothing in order to prevent the
whole productory to return zero because of a single feature.

weight(sk) = P (sk)
∏m

i=1 P (fi|sk) (2)

For the Vector Space Model (VSM) method, we represent each occurrence con-
text as a vector, where each feature will have a 1 or 0 value to indicate the occur-
rence/absence of the feature. For each sense in training, one centroid vector is obtained
(Csk). These centroids are compared with the vectors that represent testing examples
(f ), by means of the cosine similarity function. The closest centroid assigns its sense to
the testing example. No smoothing is required to apply this algorithm, but it is possible
to use smoothed values instead of 1s and 0s.

weight(sk) = cos(Csk , f ) = Csk
.f

|Csk
||f | (3)

Regarding Support Vector Machines (SVM) we utilized SVM-Light, a public dis-
tribution of SVM by [7]. We estimated the soft margin (C) using a greedy process in

1 The PoS tagging was performed with the fnTBL toolkit [5].
2 This software was kindly provided by David Yarowsky’s group, from the Johns Hopkins Uni-

versity.
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cross-validation on the training data. The weight for each sense is given by the distance
to the hyperplane that supports the classes, that is, the sense sk versus the rest of senses.

3 Feature-type smoothing

We have already seen in the introduction that estimating X/0 features with MLE would
yield a probability P (s|f) = 1 for the majority sense and a probability P (s|f) = 0 for
the minority senses, which is an underestimation. Features with X/0 counts are usual
when the training data is sparse, and these values must be smoothed before they are fed
to some learning algorithms, such as DL or NB, as they lead to undetermined values in
their formulations.

Other distributions, such as X/1, X/2, ... can also be estimated using smoothing tech-
niques. [1] argues that the probability of the second majority sense in X/1 distributions
would be overestimated by MLE. For intermediate cases, such as X/2, X/3, etc. it is not
clear whether the effort of modeling would be worth pursuing. For higher frequencies,
using the raw frequency could be good enough. In this work we focused in X/0 and X/1
distributions.

The smoothing algorithm shown here (which we will call feature-type smoothing)
follows the ideas of [1]. The main criteria to partition the training data has been to
use raw frequencies and feature types (e.g. prev N wf, feature type that represents the
first noun word-form to the left of the target). Raw frequency is the most important
parameter when estimating the distribution, and joining features of the same type is a
conservative approach to partition the data. Therefore we join all occurrences of the
prev N wf feature type that have the same frequency distribution for the target word,
e.g. 1/0. This way, we perform smoothing separately for each word.

We could use the smoothed values calculated in this manner directly, but many data
points would still be missing. For instance, when studying prev N wf in the X/0 fre-
quency case for art, we found occurrences of this feature type in held-out data in the
1/0, 2/0 and 3/0 cases, but not the rest (4/0 and higher). In this case it is necessary to
use interpolation for the missing data points, and we applied log-linear interpolation.
The interpolation also offers additional benefits. Firstly, using the slope of the interpo-
lated line we can detect anomalous data (such as cases where 1/0 gets higher smoothed
values than 5/0) as we always expect a positive slope, that is, higher ratios deserve
higher smoothed values. Secondly, interpolation can be used to override a minority of
data points which contradict the general trend. These points will be illustrated in the
examples presented in Section 4.3.

However, when using interpolation, we need at least two or three data points for
all feature types. For feature types with few points, we apply a back-off strategy: we
join the available data for all words in the same Part of Speech. The rationale for this
grouping is that strong features for a noun should be also strong for other nouns. In order
to decide whether we have enough data for a feature type or not, we use the number of
data points (minimum of three) available for interpolation. In order to check the validity
of the interpolation, those cases where we get negative slope are discarded.
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Original Held-out Accumulated Interpolated
X Y X’ Y’ X’/Y’ X’ Y’ X’/Y’ log(X’/Y’) X” Y” X”/Y” log(X”/Y”)
1 0 4 4 1 4 4 1.00 0.00 1 0.91 1.10 0.09
2 0 6 1 6 10 5 2.00 0.69 2 1.18 1.69 0.52
3 0 2 0 ∞ 12 5 2.4 0.88 3 1.14 2.63 0.96

4 0.98 4.08 1.40
...

Table 1. Smoothing table for the feature prev N wf and the word art (X/0 distribution).

4 Feature-type smoothing algorithm

There are two steps in the application of the smoothing algorithm to the disambiguation
task. First, we use the available training data in cross-validation, with an interpolation
method, in order to estimate the smoothing tables for each feature type with X/0 or
X/1 raw frequency. Second, the interpolated tables are accessed on the disambiguation
phase, when the WSD methods require them. Sections 4.1 and 4.2 present the algo-
rithms, and Section 4.3 shows some illustrative examples.

4.1 Building smoothing tables

We build two kinds of smoothing tables. The first kind is the application of the grouping
strategy based on feature types and frequency distributions. Two tables are produced:
one at the word level, and another at the PoS level, which we will call smoothed tables.
The second kind is the result of the interpolation method over the two aforementioned
tables, which we will call interpolated tables. All in all, four tables are produced in two
steps for each frequency distribution (X/0 and X/1).
1) Construct smoothing tables for each target word and for each PoS. For each fea-
ture type (e.g.: prev N wf ), we identify the instances that have X/0 or X/1 distributions
(e.g. prev N wf Aboriginal) and we count collectively their occurrences per sense. We
obtain tables with (X’,Y’) values for each word, feature type and pair (X,Y); where
(X,Y) indicate the values seen for each feature in the training part, and (X’,Y’) repre-
sent the counts for all the instances of the feature type with the same (X,Y) distribution
in the held-out part.

We perform this step using 5-fold cross-validation on the training data. We sepa-
rate in a stratified way3 the training data in two parts: estimation-fold (4/5 of the data)
and target-fold (1/5 of the data), which plays the role of the held-out data. We run the
algorithm five times in turn, until each part has been used as target. The algorithm is
described in detail in Figure 1 for the X/0 case (the X/1 case is similar). Note that the X
count corresponds to the majority sense for the feature, and the Y count to all the rest
of minority senses for the feature. For example, we can see in the held-out columns in
Table 1 the (X’,Y’) counts obtained for the feature type prev N wf and the target word
art in the Senseval-2 training data for the X/0 cases.

3 By stratified, we mean that we try to keep the same proportion of word senses in each of the 5
folds.
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1. Construct word smoothing tables for X/0 (X0)
- For each fold from training-data (5 folds)

Build count(f, w, sense) for all senses from the estimation-folds (4 folds)
For each word w, for each feature f in each occurrence in target-fold (1 fold)

get count′(f, w, sense) for all senses of w in target-fold
If distribution of count′(f, w, sense) is of kind X/0 (X0) then

For each sense
if sense = s. maxs count(f, w, s)
then # sense is major sense in estimation-fold

increment X’ in table word X0(w,type(f),X)
else

increment Y’ in table word X0(w,type(f),X)

- Normalize all tables: X’ is set to X, and Y’ := Y’X’/X
Output (No need to keep X’): normtable word X0(w, type(f), X) := Y ′

2. Log linear Interpolation
- Accumulate X’ and Y’ values
- Map into linear space:

logtable word X0(w, type(f), X) :=
log(acctable word X0(w, type(f), X).X′/acctable word X0(w, type(f), X).Y ′)

- Do linear interpolation of logtable: sourcepoint(w, type(f)) = a0,
gradient(w, type(f)) = a1

- For each X from 1 to ∞
interpolatedtable word X0(w, type(f), X) := X/(ea0+a1X)

Fig. 1. Construction of smoothing tables for X/0 features for words. The X/1 and PoS tables are
built similarly.

2) Create interpolation curves. From the smoothing tables, we interpolate curves for
feature types that have at least 3 points. The process is described in detail in the second
part of Figure 1. We first accumulate the counts in the smoothed table from the previous
step. The “Accumulated” columns in Table 1 show these values, as well as the X/Y ratio
and its logarithm. The Y value is then normalized, and mapped into the logarithmic
space. We apply a common linear interpolation algorithm called least square method
[8], which yields the starting point and slopes for each interpolation table. If we get a
negative slope, we discard this interpolation result. Otherwise, we can apply it to any
X, and after mapping again into the original space we get the interpolated values of
Y, which we denote Y”. Table 1 shows the Y” values, the X”/Y” ratios, and the log
values we finally obtain for the prev N wf example for art for X = 1..4 and Y = 0
(“Interpolated” columns). The X”/Y”ratios indicate that for X values lower than 4, the
feature type is not reliable, but for X >= 4 and Y = 0, this feature type can be used
with high confidence for art.

4.2 Using the smoothed values

The process to use the smoothed values in testing is described in Figure 2. There
we see that when we find X/0 or X/1 distributions, the algorithm resorts to the ob-
tain smoothed value function to access the smoothing tables. The four tables constructed
in the previous section are all partial, i.e. in some cases there is no data available for
some of the senses. The tables are consulted in a fixed order: we first check the inter-
polated table for the target word; if it is not available for the feature type, we access
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Given an occurrence of a word w in testing, for each feature f in the context:
Get count(f, w, sense) for all senses from all training (all 5 folds)
If counts are not X/1 or X/0 then

For each sense:
count′(f, w, sense) := count(f, w, sense)

Elseif count is X/Y (where Y is 1 or 0) then
If Y ′ = obtain smoothed value(X, Y )
Then

For each sense
If sense = s. maxs count(f , w, s) then #(MAJOR SENSE)

count′(f, w, sense) = X
Elsif sense = 2nd sense then #(ONLY IF Y=1, WHERE A MINORITY SENSE

OCCURS ONCE)
count′(f, w, sense) := Y ′ #(SECOND SENSE GETS MORE CREDIT)

Else
count′(f, w, sense) := Y ′/|othersenses| # (DISTRIBUTE WEIGHT UNIFORMLY

AMONG MINOR SENSES)

Else # (THERE IS NO SMOOTHING DATA FOR THIS X/Y)
DISCARD #(THIS IS POSSIBLE FOR DL)
For each sense

If sense = s. maxs count(f , w, s) then # (MAJOR SENSE)
count′(f, w, sense) := X

Elsif sense = 2nd sense then #(ONLY IF Y=1, WHERE A MINORITY SENSE
OCCURS ONCE)

count′(f, w, sense) := 1 # (SECOND SENSE GETS MORE CREDIT)

Fig. 2. Application of Feature-type smoothing to DL, NB and VSM.

the interpolated table for the PoS of the target word. Otherwise, we resort to the non-
interpolated smoothing table at the word level. Finally we access the non-interpolated
smoothing table for the PoS.

In cases were the four tables fail to provide information, we can benefit from ad-
ditional smoothing techniques. The three ML methods that we have applied have dif-
ferent smoothing requirements, and one of them (NB) does need a generally applicable
smoothing technique:

DL: as it only uses the strongest piece of evidence, it can discard X/0 features. It does
not require X/1 smoothing either.
NB: It needs to estimate all single probabilities, i.e. all features for all senses, therefore
it needs smoothing in X/0, X/1 and even X/2 and larger values of Y. The reason is that
in the case of polisemy degrees larger than 2, the rare senses might not occur for the
target feature and could lead to infinite values in Equation (2).
VSM: it has no requirement for smoothing.

In order to check the impact of the various smoothing possibilities we have devised
6 smoothing algorithms to be applied with the 3 ML methods (DL, NB, and VSM).
We want to note that not requiring smoothing does not mean that the method does not
profit from the smoothing technique (as we shall see in the evaluation). For the base-
line smoothing strategy we chose both “no smoothing”, and “fixed smoothing”; we also
tried a simple but competitive method from [9], denoted as “Ng smoothing” (methods
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prev N wf win cont lem context win 2gram context
X Y

X’ Y’ X” Y” X’ Y’ X” Y” X’ Y’ X” Y”
1 0 4 4 1 0.91 517 1187 1 2.24 63 150 1 2.31
2 0 6 1 2 1.18 82 125 2 4.45 8 4 2 4.37
3 0 2 0 3 1.14 13 22 3 6.62 2 1 3 6.48
...

Table 2. Smoothed values (interpolation per word) for the feature types prev N wf,
win cont lem context and win 2gram context with the target word art.

to be described below). The other three possibilities consist on applying the Feature-
Type method as in Figure 2, with two variants: use “Ng smoothing” for back-off (E), or
in a combined fashion (F):

(A) No smoothing: Use raw frequencies directly.
(B) Fixed smoothing: Assign 0.1 raw frequency to each sense with a 0 value.
(Ng) Ng smoothing: This method is based on the global distribution of the senses in the
training data. For each feature, each of the senses of the target word that has no occur-
rences in the training data gets the ratio between the probability of the sense occurring in
the training data and the total number of examples: Prob(sense)/Number of examples.
(Ft) Feature-type smoothing: The method described in this paper. In the case of DL,
note that when no data is available the feature is just discarded. For NB, it is necessary
to rely in back-off strategies (see E and F).
(E) Ft with Ng as back-off: When Ft does not provide smoothed values, Ng is applied.
(F) Ft and Ng combined: The smoothed values are obtained by multiplying Ft and Ng
values. Thus, in Figure 2, the count′(f, w, sense) values are multiplied by
Prob(sense)/Number of examples.

The output of the smoothing algorithm is the list of counts that replace the original
frequency counts when computing the probabilities. We tested all possible combina-
tions, but notice that not all smoothing techniques can be used with all the methods
(e.g. we cannot use NB with “no smoothing”).

4.3 Application of smoothing: an example

We will focus on three feature types and the target word art in order to show how
the smoothed values are computed. For art, the following features have a 1/0 distribu-
tion in the training data: “prev N wf Aboriginal”, “win cont lem context Jerry”, and
“win 2gram context collection owned”4. The majority sense for the three cases is the
first sense. If we find one of those features in a test occurrence of art, we would like to
know whether they are good indicators of the first sense or not.

As all these features occur with frequency 1/0, we have collected all counts for
the feature types (e.g. prev N wf ) which also have 1/0 occurrences in the training data.

4 The first feature indicates that Aboriginal was the first noun to the left of art. The second that
Jerry was found in the context window. The third that the bigram collection owned was found
in the context window.
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Fig. 3. Interpolation curves for the X/0 case (features prev N wf and win context) with the target
word art. The Y” estimation and the log(X′′/Y ′′) values are given for each X value and feature.

Table 1 shows the counts for prev N wf ; the (4,4) values that appear for (X’,Y’) indicate
that the prev N wf features that have 1/0 distribution in the target-folds contribute 4
examples to the majority sense and 4 to the minority senses when looked up in the
estimation-folds.

The data for prev N wf has at least 3 points, and therefore we use the accumulated
frequencies to obtain an interpolation table. We see that the interpolated frequencies for
the minority senses stay nearly constant when the X values go up. This would reflect
that the probability of the minority senses would go down quickly for higher values of
X. In fact, the interpolated table can be used for values of X greater that 3, which had
not been attested in the training data.

The same process is followed for the other two feature types: win cont lem context
and win 2gram context. Table 2 shows the smoothed values (X’,Y’) and the interpolated
values (X”,Y”) for the three types studied. The values for Y are much higher in the
latter two cases, indicating that there is a very low confidence for these features for the
word art. In contrast, prev N wf can be a valuable feature if found in 4/0 or greater
distributions.

Figure 3 shows this different behavior graphically for win cont lem context and
prev N wf. For each feature type, the estimated Y” values and the log-ratio of the ma-
jority sense are given: the higher the Y” the lower the confidence in the majority sense,
and inversely for the log-ratio. We can see that the curve for the Y” values assigned
to prev N wf get lower credit as X increases, and the log-ratio grows constantly. On
the contrary, for win cont lem context the values of Y” increase, and that the log-ratio
remains below zero, indicating that this feature type is not informative.

5 Results

The main experiment is aimed at studying the performance of four ML methods with
the different smoothing approaches (where applicable). The recall achieved on the
Senseval-2 dataset is shown in Table 3, the best results per method marked in bold.
We separated the results according to the type of smoothing: basic smoothing (“no
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Basic Smoothing Complex Smoothing
A B Ng Ft E F

DL 60.4 60.7 64.4 64.4 64.3
NB 62.9 63.5 61.8 63.8
VSM 65.9 65.6 66.2 64.0 64.2 65.2
SVM 65.8

Table 3. ML methods and smoothing techniques: (A) no smoothing, (B) fixed smoothing, (Ng)
Ng smoothing, (Ft) Feature-type smoothing, the method presented in this paper, (E) Ft with Ng
as back-off, and (F) the combination of Ft and Ng.

Systems Basic smoothing Complex smoothing
All methods 65.7 66.2
except SVM 64.9 66.2
except NB 66.0 66.7
except VSM 64.9 65.7
except DL 65.7 66.3

Table 4. Combination of systems with basic smoothing and complex smoothing. The rows show
the recall achieved combining the 4 systems, and discarding one in turn.

smoothing” and “fixed smoothing”), and complex smoothing (techniques that rely on
“Feature-type smoothing” and “Ng smoothing”). We can see that the results are dif-
ferent depending on the ML method, but the best results are achieved with complex
smoothing for the 3 ML methods studied: DL (Ft and E), NB (F), and VSM (Ng). The
best performance is attained by the VSM method, reaching 66.2%, which is one of the
highest reported in this dataset. The other methods get more profit from the smooth-
ing techniques, but their performance is clearly lower. McNemar’s test 5 shows that the
difference between the results of the best “basic smoothing” technique and the best
“complex smoothing” technique is significant for DL and NB, but not for VSM.

All in all, we see that the performance of the statistically-based (DL, NB) methods
improves significantly, making them comparable to the best single methods. In the next
experiment, we tested a simple way to combine the output of the 4 systems: one system,
one vote. The combination was tested on 2 types of systems: those that relied on “com-
plex smoothing”, and those that not. For each algorithm, the best smoothing technique
for each type was chosen; e.g. the VSM algorithm would use the (A) approach for “sim-
ple smoothing”, and (Ng) for “complex smoothing” (see Table 3). The performance of
these systems is given in Table 4. The table also shows the results achieved discarding
one system in turn.

The results show that we get an improvement over the best system (VSM) of 0.5%
when combining it with DL and SVM. The table also illustrates that smoothing ac-
counts for all the improvement, as the combination of methods with simple smoothing
only reaches 66.0% in the best case, for 66.7% of the “complex smoothing” (difference
statistically significant according to McNemar’s test with 95% confidence interval).

5 McNemar’s significance test has been applied with a 95% confidence interval.
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Method Group Smoothing Recall
Combination IXA Complex (best) 66.7
Combination JHU 66.5 ⇒ Best result to date
VSM IXA Ng 66.2
Combination IXA Basic (best) 66.0
SVM IXA 65.8
SVM NUS 65.4 ⇒ 2nd best result to date
DL IXA Ft 64.4
Combination JHU-S2 64.2 ⇒ Senseval-2 winner
NB IXA E 63.8
NB NUS “Add one” 62.7

Table 5. Comparison with the best systems in the Senseval-2 competition and the recent literature.

As a reference, Table 5 shows the results reported for different groups and algo-
rithms in the Senseval-2 competition and in more recent works. Our algorithms are
identified by the “IXA” letters. “JHU - S2”, corresponds to the Johns Hopkins Uni-
versity system in Senseval-2, which was the best performing system. “JHU” indicates
the systems from the Johns Hopkins University implemented after Senseval-2 [10, 11].
Finally, “NUS” (National University of Singapore) stands for the systems presented
in [12]. The Table is sorted by recall.

We can see that our systems achieve high performance, and that the combination of
systems is able to beat the best results. However, we chose the best smoothing algorithm
for the methods using the testing data (instead of using cross-validation on training,
which would require to construct the smoothing tables for each fold). This fact makes
the combined system not directly comparable. In any case, it seems clear that the system
benefits from smoothing, and obtains results similar to the best figures reported to date.

6 Conclusions

In this work, we have studied the smoothing method proposed in [1], and we present a
detailed algorithm for its application to WSD. We have described the parameters used,
and we have applied the method on three different ML algorithms: Decision Lists (DL),
Naive Bayes (NB), and Vector Space Model (VSM). We also analyzed the impact of
several smoothing strategies. The results indicate that the smoothing method explored in
this paper is able to make all three methods perform at very high precisions, comparable
and in some cases superior to the best result attained in the Senseval-2 competition,
which was a combination of several systems. We also show that a simple combination
of the methods and a fourth system based on Support Vector Machines (SVM) attains
the best result for the Senseval-2 competition reported so far (although only in its more
successful configuration, as the system was not “frozen” using cross-validation). At
present, this architecture has also been applied in the Senseval-3 competition, with good
results, only 0.6% below the best system for English [13].

For the future, we would like to extend this work to X/Y features for Y greater than
1, and try other grouping criteria, e.g. taking into account the class of the word. We
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would also like to compare our results to other more general smoothing techniques [14–
16].

Finally, we would like to apply the smoothing results to detect good features for
bootstrapping, even in the case of low amounts of training data (as it is the case for most
of the words in WSD). The DL method, which improves significantly with smoothing,
may be well suited for this task, as it relies on one single piece of evidence (feature) to
choose the correct sense.
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