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Abstract

In this paper we propose a new graph-based
method that uses the knowledge in a LKB
(based on WordNet) in order to perform un-
supervised Word Sense Disambiguation. Our
algorithm uses the full graph of the LKB ef-
ficiently, performing better than previous ap-
proaches in English all-words datasets. We
also show that the algorithm can be easily
ported to other languages with good results,
with the only requirement of having a word-
net. In addition, we make an analysis of the
performance of the algorithm, showing that it
is efficient and that it could be tuned to be
faster.

1 Introduction

Word Sense Disambiguation (WSD) is a key
enabling-technology that automatically chooses the
intended sense of a word in context. Supervised
WSD systems are the best performing in public eval-
uations (Palmer et al., 2001; Snyder and Palmer,
2004; Pradhan et al., 2007) but they need large
amounts of hand-tagged data, which is typically
very expensive to build. Given the relatively small
amount of training data available, current state-of-
the-art systems only beat the simple most frequent
sense (MFS) baseline1 by a small margin. As an
alternative to supervised systems, knowledge-based
WSD systems exploit the information present in a

1This baseline consists of tagging all occurrences in the test
data with the sense of the word that occurs more often in the
training data

lexical knowledge base (LKB) to perform WSD,
without using any further corpus evidence.

Traditional knowledge-based WSD systems as-
sign a sense to an ambiguous word by comparing
each of its senses with those of the surrounding
context. Typically, some semantic similarity met-
ric is used for calculating the relatedness among
senses (Lesk, 1986; McCarthy et al., 2004). One of
the major drawbacks of these approaches stems from
the fact that senses are compared in a pairwise fash-
ion and thus the number of computations can grow
exponentially with the number of words. Although
alternatives like simulated annealing (Cowie et al.,
1992) and conceptual density (Agirre and Rigau,
1996) were tried, most of past knowledge based
WSD was done in a suboptimal word-by-word pro-
cess, i.e., disambiguating words one at a time.

Recently, graph-based methods for knowledge-
based WSD have gained much attention in the NLP
community (Sinha and Mihalcea, 2007; Navigli and
Lapata, 2007; Mihalcea, 2005; Agirre and Soroa,
2008). These methods use well-known graph-based
techniques to find and exploit the structural proper-
ties of the graph underlying a particular LKB. Be-
cause the graph is analyzed as a whole, these tech-
niques have the remarkable property of being able
to find globally optimal solutions, given the rela-
tions between entities. Graph-based WSD methods
are particularly suited for disambiguating word se-
quences, and they manage to exploit the interrela-
tions among the senses in the given context. In this
sense, they provide a principled solution to the ex-
ponential explosion problem, with excellent perfor-
mance.



Graph-based WSD is performed over a graph
composed by senses (nodes) and relations between
pairs of senses (edges). The relations may be of sev-
eral types (lexico-semantic, coocurrence relations,
etc.) and may have some weight attached to them.
The disambiguation is typically performed by ap-
plying a ranking algorithm over the graph, and then
assigning the concepts with highest rank to the cor-
responding words. Given the computational cost of
using large graphs like WordNet, many researchers
use smaller subgraphs built online for each target
context.

In this paper we present a novel graph-based
WSD algorithm which uses the full graph of Word-
Net efficiently, performing significantly better that
previously published approaches in English all-
words datasets. We also show that the algorithm
can be easily ported to other languages with good
results, with the only requirement of having a word-
net. The algorithm is publicly available2 and can be
applied easily to sense inventories and knowledge
bases different from WordNet. Our analysis shows
that our algorithm is efficient compared to previ-
ously proposed alternatives, and that a good choice
of WordNet versions and relations is fundamental
for good performance.

The paper is structured as follows. We first de-
scribe the PageRank and Personalized PageRank al-
gorithms. Section 3 introduces the graph based
methods used for WSD. Section 4 shows the exper-
imental setting and the main results, and Section 5
compares our methods with related experiments on
graph-based WSD systems. Section 6 shows the
results of the method when applied to a Spanish
dataset. Section 7 analyzes the performance of the
algorithm. Finally, we draw some conclusions in
Section 8.

2 PageRank and Personalized PageRank

The celebrated PageRank algorithm (Brin and Page,
1998) is a method for ranking the vertices in a
graph according to their relative structural impor-
tance. The main idea of PageRank is that whenever a
link from vi to vj exists in a graph, a vote from node
i to node j is produced, and hence the rank of node
j increases. Besides, the strength of the vote from

2http://ixa2.si.ehu.es/ukb

i to j also depends on the rank of node i: the more
important node i is, the more strength its votes will
have. Alternatively, PageRank can also be viewed
as the result of a random walk process, where the
final rank of node i represents the probability of a
random walk over the graph ending on node i, at a
sufficiently large time.

Let G be a graph with N vertices v1, . . . , vN and
di be the outdegree of node i; let M be a N × N
transition probability matrix, where Mji = 1

di
if a

link from i to j exists, and zero otherwise. Then,
the calculation of the PageRank vector Pr over G is
equivalent to resolving Equation (1).

Pr = cMPr + (1− c)v (1)

In the equation, v is a N × 1 vector whose ele-
ments are 1

N and c is the so called damping factor,
a scalar value between 0 and 1. The first term of the
sum on the equation models the voting scheme de-
scribed in the beginning of the section. The second
term represents, loosely speaking, the probability of
a surfer randomly jumping to any node, e.g. without
following any paths on the graph. The damping fac-
tor, usually set in the [0.85..0.95] range, models the
way in which these two terms are combined at each
step.

The second term on Eq. (1) can also be seen as
a smoothing factor that makes any graph fulfill the
property of being aperiodic and irreducible, and thus
guarantees that PageRank calculation converges to a
unique stationary distribution.

In the traditional PageRank formulation the vector
v is a stochastic normalized vector whose element
values are all 1

N , thus assigning equal probabilities
to all nodes in the graph in case of random jumps.
However, as pointed out by (Haveliwala, 2002), the
vector v can be non-uniform and assign stronger
probabilities to certain kinds of nodes, effectively bi-
asing the resulting PageRank vector to prefer these
nodes. For example, if we concentrate all the prob-
ability mass on a unique node i, all random jumps
on the walk will return to i and thus its rank will be
high; moreover, the high rank of i will make all the
nodes in its vicinity also receive a high rank. Thus,
the importance of node i given by the initial distri-
bution of v spreads along the graph on successive
iterations of the algorithm.



In this paper, we will use traditional PageRank to
refer to the case when a uniform v vector is used
in Eq. (1); and whenever a modified v is used, we
will call it Personalized PageRank. The next section
shows how we define a modified v.

PageRank is actually calculated by applying an
iterative algorithm which computes Eq. (1) succes-
sively until convergence below a given threshold is
achieved, or, more typically, until a fixed number of
iterations are executed.

Regarding PageRank implementation details, we
chose a damping value of 0.85 and finish the calcula-
tion after 30 iterations. We did not try other damping
factors. Some preliminary experiments with higher
iteration counts showed that although sometimes the
node ranks varied, the relative order among particu-
lar word synsets remained stable after the initial it-
erations (cf. Section 7 for further details). Note that,
in order to discard the effect of dangling nodes (i.e.
nodes without outlinks) we slightly modified Eq. (1).
For the sake of brevity we omit the details, which the
interested reader can check in (Langville and Meyer,
2003).

3 Using PageRank for WSD

In this section we present the application of PageR-
ank to WSD. If we were to apply the traditional
PageRank over the whole WordNet we would get a
context-independent ranking of word senses, which
is not what we want. Given an input piece of text
(typically one sentence, or a small set of contiguous
sentences), we want to disambiguate all open-class
words in the input taken the rest as context. In this
framework, we need to rank the senses of the target
words according to the other words in the context.
Theare two main alternatives to achieve this:

• To create a subgraph of WordNet which con-
nects the senses of the words in the input text,
and then apply traditional PageRank over the
subgraph.

• To use Personalized PageRank, initializing v
with the senses of the words in the input text

The first method has been explored in the litera-
ture (cf. Section 5), and we also presented a variant
in (Agirre and Soroa, 2008) but the second method is
novel in WSD. In both cases, the algorithms return a

list of ranked senses for each target word in the con-
text. We will see each of them in turn, but first we
will present some notation and a preliminary step.

3.1 Preliminary step

A LKB is formed by a set of concepts and relations
among them, and a dictionary, i.e., a list of words
(typically, word lemmas) each of them linked to at
least one concept of the LKB. Given any such LKB,
we build an undirected graph G = (V,E) where
nodes represent LKB concepts (vi), and each rela-
tion between concepts vi and vj is represented by an
undirected edge ei,j .

In our experiments we have tried our algorithms
using three different LKBs:

• MCR16 + Xwn: The Multilingual Central
Repository (Atserias et al., 2004b) is a lexi-
cal knowledge base built within the MEAN-
ING project3. This LKB comprises the original
WordNet 1.6 synsets and relations, plus some
relations from other WordNet versions auto-
matically mapped4 into version 1.6: WordNet
2.0 relations and eXtended WordNet relations
(Mihalcea and Moldovan, 2001) (gold, silver
and normal relations). The resulting graph has
99, 632 vertices and 637, 290 relations.

• WNet17 + Xwn: WordNet 1.7 synset and re-
lations and eXtended WordNet relations. The
graph has 109, 359 vertices and 620, 396 edges

• WNet30 + gloss: WordNet 3.0 synset and
relations, including manually disambiguated
glosses . The graph has 117, 522 vertices and
525, 356 relations.

Given an input text, we extract the list Wi i =
1 . . . m of content words (i.e. nouns, verbs, adjec-
tives and adverbs) which have an entry in the dictio-
nary, and thus can be related to LKB concepts. Let
Concepts i = {v1, . . . , vim} be the im associated
concepts of word Wi in the LKB graph. Note that
monosemous words will be related to just one con-
cept, whereas polysemous words may be attached to
several. As a result of the disambiguation process,

3http://nipadio.lsi.upc.es/nlp/meaning
4We use the freely available WordNet mappings from

http://www.lsi.upc.es/˜nlp/tools/download-map.php



every concept in Concepts i, i = 1, . . . ,m receives
a score. Then, for each target word to be disam-
biguated, we just choose its associated concept in G
with maximal score.

In our experiments we build a context of at least
20 content words for each sentence to be disam-
biguated, taking the sentences immediately before
and after it in the case that the original sentence was
too short.

3.2 Traditional PageRank over Subgraph (Spr)
We follow the algorithm presented in (Agirre and
Soroa, 2008), which we explain here for complete-
ness. The main idea of the subgraph method is to ex-
tract the subgraph of GKB whose vertices and rela-
tions are particularly relevant for a given input con-
text. Such a subgraph is called a “disambiguation
subgraph” GD, and it is built in the following way.
For each word Wi in the input context and each con-
cept vi ∈ Concepts i, a standard breath-first search
(BFS) over GKB is performed, starting at node vi.
Each run of the BFS calculates the minimum dis-
tance paths between vi and the rest of concepts of
GKB . In particular, we are interested in the min-
imum distance paths between vi and the concepts
associated to the rest of the words in the context,
vj ∈

⋃
j 6=i Conceptsj . Let mdpvi

be the set of these
shortest paths.

This BFS computation is repeated for every con-
cept of every word in the input context, storing
mdpvi

accordingly. At the end, we obtain a set of
minimum length paths each of them having a differ-
ent concept as a source. The disambiguation graph
GD is then just the union of the vertices and edges
of the shortest paths, GD =

⋃m
i=1{mdpvj

/vj ∈
Concepts i}.

The disambiguation graph GD is thus a subgraph
of the original GKB graph obtained by computing
the shortest paths between the concepts of the words
co-occurring in the context. Thus, we hypothesize
that it captures the most relevant concepts and rela-
tions in the knowledge base for the particular input
context.

Once the GD graph is built, we compute the tradi-
tional PageRank algorithm over it. The intuition be-
hind this step is that the vertices representing the cor-
rect concepts will be more relevant in GD than the
rest of the possible concepts of the context words,

which should have less relations on average and be
more isolated.

As usual, the disambiguation step is performed by
assigning to each word Wi the associated concept
in Concepts i which has maximum rank. In case of
ties we assign all the concepts with maximum rank.
Note that the standard evaluation script provided in
the Senseval competitions treats multiple senses as
if one was chosen at random, i.e. for evaluation pur-
poses our method is equivalent to breaking ties at
random.

3.3 Personalized PageRank (Ppr and Ppr w2w)

As mentioned before, personalized PageRank allows
us to use the full LKB. We first insert the context
words into the graph G as nodes, and link them with
directed edges to their respective concepts. Then,
we compute the personalized PageRank of the graph
G by concentrating the initial probability mass uni-
formly over the newly introduced word nodes. As
the words are linked to the concepts by directed
edges, they act as source nodes injecting mass into
the concepts they are associated with, which thus be-
come relevant nodes, and spread their mass over the
LKB graph. Therefore, the resulting personalized
PageRank vector can be seen as a measure of the
structural relevance of LKB concepts in the presence
of the input context.

One problem with Personalized PageRank is that
if one of the target words has two senses which are
related by semantic relations, those senses reinforce
each other, and could thus dampen the effect of the
other senses in the context. With this observation in
mind we devised a variant (dubbed Ppr w2w), where
we build the graph for each target word in the con-
text: for each target word Wi, we concentrate the
initial probability mass in the senses of the words
surrounding Wi, but not in the senses of the target
word itself, so that context words increase its rela-
tive importance in the graph. The main idea of this
approach is to avoid biasing the initial score of con-
cepts associated to target word Wi, and let the sur-
rounding words decide which concept associated to
Wi has more relevance. Contrary to the other two
approaches, Ppr w2w does not disambiguate all tar-
get words of the context in a single run, which makes
it less efficient (cf. Section 7).



Senseval-2 All Words dataset
LKB Method All N V Adj. Adv. Conf. interval
MCR16 + Xwn Ppr 51.1 64.9 38.1 57.4 47.5 [49.3, 52.6]
MCR16 + Xwn Ppr w2w 53.3 64.5 38.6 58.3 48.1 [52.0, 55.0]
MCR16 + Xwn Spr 52.7 64.8 35.3 56.8 50.2 [51.3, 54.4]
WNet17 + Xwn Ppr 56.8 71.1 33.4 55.9 67.1 [55.0, 58.7]
WNet17 + Xwn Ppr w2w 58.6 70.4 38.9 58.3 70.1 [56.7, 60.3]
WNet17 + Xwn Spr 56.7 66.8 37.7 57.6 70.8 [55.0, 58.2]
WNet30 + gloss Ppr 53.5 70.0 28.6 53.9 55.1 [51.8, 55.2]
WNet30 + gloss Ppr w2w 55.8 71.9 34.4 53.8 57.5 [54.1, 57.8]
WNet30 + gloss Spr 54.8 68.9 35.1 55.2 56.5 [53.2, 56.3]
MFS 60.1 71.2 39.0 61.1 75.4 [58.6, 61.9]
SMUaw 68.6 78.0 52.9 69.9 81.7

Senseval-3 All Words dataset
LKB Method All N V Adj. Adv.
MCR16 + Xwn Ppr 54.3 60.9 45.4 56.5 92.9 [52.3, 56.1]
MCR16 + Xwn Ppr w2w 55.8 63.2 46.2 57.5 92.9 [53.7, 57.7]
MCR16 + Xwn Static 53.7 59.5 45.0 57.8 92.9 [51.8, 55.7]
WNet17 + Xwn Ppr 56.1 62.6 46.0 60.8 92.9 [54.0, 58.1]
WNet17 + Xwn Ppr w2w 57.4 64.1 46.9 62.6 92.9 [55.5, 59.3]
WNet17 + Xwn Spr 56.20 61.6 47.3 61.8 92.9 [54.8, 58.2]
WNet30 + gloss Ppr 48.5 52.2 41.5 54.2 78.6 [46.7, 50.6]
WNet30 + gloss Ppr w2w 51.6 59.0 40.2 57.2 78.6 [49.9, 53.3]
WNet30 + gloss Spr 45.4 54.1 31.4 52.5 78.6 [43.7, 47.4]
MFS 62.3 69.3 53.6 63.7 92.9 [60.2, 64.0]
GAMBL 65.2 70.8 59.3 65.3 100

Table 1: Results (as recall) on Senseval-2 and Senseval-3 all words tasks. We also include the MFS baseline and the
best results of supervised systems at competition time (SMUaw,GAMBL).

4 Evaluation framework and results

In this paper we will use two datasets for comparing
graph-based WSD methods, namely, the Senseval-2
(S2AW) and Senseval-3 (S3AW) all words datasets
(Snyder and Palmer, 2004; Palmer et al., 2001),
which are both labeled with WordNet 1.7 tags. We
did not use the Semeval dataset, for the sake of com-
paring our results to related work, none of which
used Semeval data. Table 1 shows the results as
recall of the graph-based WSD system over these
datasets on the different LKBs. Note that the pre-
cision is equal to the recall in all cases, as our al-
gorithms always return a result. We detail overall
results, as well as results per PoS, and the confi-
dence interval for the overall results. The interval
was computed using bootstrap resampling with 95%
confidence.

The table shows that Ppr w2w is consistently the
best method in both datasets and for all LKBs. Ppr
and Spr obtain comparable results, which is remark-

able, given the simplicity of the Ppr algorithm, com-
pared to the more elaborate algorithm to construct
the graph. The differences between methods are not
statistically significant, which is a common problem
on this relatively small datasets (Snyder and Palmer,
2004; Palmer et al., 2001).

Regarding LKBs, the best results are obtained us-
ing WordNet 1.7 and eXtended WordNet. Here the
differences are in many cases significant. These re-
sults are surprising, as we would expect that the
manually disambiguated gloss relations from Word-
Net 3.0 would lead to better results, compared to the
automatically disambiguated gloss relations from
the eXtended WordNet (linked to version 1.7). The
lower performance of WNet30+gloss can be due to
the fact that the Senseval all words data set is tagged
using WordNet 1.7 synsets. When using a differ-
ent LKB for WSD, a mapping to WordNet 1.7 is re-
quired. Although the mapping is cited as having a
correctness on the high 90s (Daude et al., 2000), it



Senseval-2 All Words dataset
System All N V Adj. Adv.
Mih05 54.2 57.5 36.5 56.7 70.9
Sihna07 56.4 65.6 32.3 61.4 60.2
Tsatsa07 49.2 – – – –
Spr 56.6 66.7 37.5 57.6 70.8
Ppr 56.8 71.1 33.4 55.9 67.1
Ppr w2w 58.6 70.4 38.9 58.3 70.1
MFS 60.1 71.2 39.0 61.1 75.4

Senseval-3 All Words dataset
System All N V Adj. Adv.
Mih05 52.2 - - - -
Sihna07 52.4 60.5 40.6 54.1 100.0
Nav07 - 61.9 36.1 62.8 -
Spr 56.2 61.6 47.3 61.8 92.9
Ppr 56.1 62.6 46.0 60.8 92.9
Ppr w2w 57.4 64.1 46.9 62.6 92.9
MFS 62.3 69.3 53.6 63.7 92.9
Nav05 60.4 - - - -

Table 2: Comparison with related work. Note that Nav05
uses the MFS.

could have introduced sufficient noise to counteract
the benefits of the hand-disambiguated glosses.

Table 1 also shows the most frequent sense
(MFS), as well as the best supervised systems (Sny-
der and Palmer, 2004; Palmer et al., 2001) that
participated in each competition (SMUaw and
GAMBL, respectively). The MFS is a baseline for
supervised systems, but it is considered a difficult
competitor for unsupervised systems, which rarely
come close to it. In this case the MFS baseline was
computed using previously availabel training data
like SemCor. Our best results are close to the MFS
in both Senseval-2 and Senseval-3 datasets. The re-
sults for the supervised system are given for refer-
ence, and we can see that the gap is relatively small,
specially for Senseval-3.

5 Comparison to Related work

In this section we will briefly describe some graph-
based methods for knowledge-based WSD. The
methods here presented cope with the problem of
sequence-labeling, i.e., they disambiguate all the
words coocurring in a sequence (typically, all con-
tent words of a sentence). All the methods rely on
the information represented on some LKB, which
typically is some version of WordNet, sometimes

enriched with proprietary relations. The results on
our datasets, when available, are shown in Table 2.
The table also shows the performance of supervised
systems.

The TexRank algorithm (Mihalcea, 2005) for
WSD creates a complete weighted graph (e.g. a
graph where every pair of distinct vertices is con-
nected by a weighted edge) formed by the synsets
of the words in the input context. The weight of
the links joining two synsets is calculated by exe-
cuting Lesk’s algorithm (Lesk, 1986) between them,
i.e., by calculating the overlap between the words in
the glosses of the correspongind senses. Once the
complete graph is built, the PageRank algorithm is
executed over it and words are assigned to the most
relevant synset. In this sense, PageRank is used an
alternative to simulated annealing to find the optimal
pairwise combinations. The method was evaluated
on the Senseval-3 dataset, as shown in row Mih05
on Table 2.

(Sinha and Mihalcea, 2007) extends their previ-
ous work by using a collection of semantic similar-
ity measures when assigning a weight to the links
across synsets. They also compare different graph-
based centrality algorithms to rank the vertices of
the complete graph. They use different similarity
metrics for different POS types and a voting scheme
among the centrality algorithm ranks. Here, the
Senseval-3 corpus was used as a development data
set, and we can thus see those results as the upper-
bound of their method.

We can see in Table 2 that the methods presented
in this paper clearly outperform both Mih05 and
Sin07. This result suggests that analyzing the LKB
structure as a whole is preferable than computing
pairwise similarity measures over synsets. The re-
sults of various in-house made experiments repli-
cating (Mihalcea, 2005) also confirm this observa-
tion. Note also that our methods are simpler than the
combination strategy used in (Sinha and Mihalcea,
2007), and that we did not perform any parameter
tuning as they did.

In (Navigli and Velardi, 2005) the authors de-
velop a knowledge-based WSD method based on
lexical chains called structural semantic intercon-
nections (SSI). Although the system was first de-
signed to find the meaning of the words in Word-
Net glosses, the authors also apply the method for



labeling text sequences. Given a text sequence,
SSI first identifies monosemous words and assigns
the corresponding synset to them. Then, it itera-
tively disambiguates the rest of terms by selecting
the senses that get the strongest interconnection with
the synsets selected so far. The interconnection is
calculated by searching for paths on the LKB, con-
strained by some hand-made rules of possible se-
mantic patterns. The method was evaluated on the
Senseval-3 dataset, as shown in row Nav05 on Ta-
ble 2. Note that the method labels an instance with
the most frequent sense of the word if the algorithm
produces no output for that instance, which makes
comparison to our system unfair, specially given the
fact that the MFS performs better than SSI. In fact it
is not possible to separate the effect of SSI from that
of the MFS. For this reason we place this method
close to the MFS baseline in Table 2.

In (Navigli and Lapata, 2007), the authors per-
form a two-stage process for WSD. Given an input
context, the method first explores the whole LKB in
order to find a subgraph which is particularly rele-
vant for the words of the context. Then, they study
different graph-based centrality algorithms for de-
ciding the relevance of the nodes on the subgraph.
As a result, every word of the context is attached
to the highest ranking concept among its possible
senses. The Spr method is very similar to (Nav-
igli and Lapata, 2007), the main difference lying
on the initial method for extracting the context sub-
graph. Whereas (Navigli and Lapata, 2007) apply
a depth-first search algorithm over the LKB graph
—and restrict the depth of the subtree to a value
of 3—, Spr relies on shortest paths between word
synsets. Navigli and Lapata don’t report overall re-
sults and therefore, we can’t directly compare our
results with theirs. However, we can see that on
a PoS-basis evaluation our results are consistently
better for nouns and verbs (especially the Ppr w2w
method) and rather similar for adjectives.

(Tsatsaronis et al., 2007) is another example of a
two-stage process, the first one consisting on find-
ing a relevant subgraph by performing a BFS search
over the LKB. The authors apply a spreading activa-
tion algorithm over the subgraph for node ranking.
Edges of the subgraph are weighted according to its
type, following a tf.idf like approach. The results
show that our methods clearly outperform Tsatsa07.

Spanish Semeval07
LKB Method Acc.
Spanish Wnet + Xnet∗ Ppr 78.4
Spanish Wnet + Xnet∗ Ppr w2w 79.3
– MFS 84.6
– Supervised 85.10

Table 3: Results (accuracy) on Spanish Semeval07
dataset, including MFS and the best supervised system
in the competition.

The fact that the Spr method works better suggests
that the traditional PageRank algorithm is a superior
method for ranking the subgraph nodes.

As stated before, all methods presented here use
some LKB for performing WSD. (Mihalcea, 2005)
and (Sinha and Mihalcea, 2007) use WordNet re-
lations as a knowledge source, but neither of them
specify which particular version did they use. (Tsat-
saronis et al., 2007) uses WordNet 1.7 enriched with
eXtended WordNet relations, just as we do. Both
(Navigli and Velardi, 2005; Navigli and Lapata,
2007) use WordNet 2.0 as the underlying LKB, al-
beit enriched with several new relations, which are
manually created. Unfortunately, those manual rela-
tions are not publicly available, so we can’t directly
compare their results with the rest of the methods.
In (Agirre and Soroa, 2008) we experiment with dif-
ferent LKBs formed by combining relations of dif-
ferent MCR versions along with relations extracted
from SemCor, which we call supervised and unsu-
pervised relations, respectively.

6 Experiments on Spanish

Our WSD algorithm can be applied over non-english
texts, provided that a LKB for this particular lan-
guage exists. We have tested the graph-algorithms
proposed in this paper on a Spanish dataset, using
the Spanish WordNet as knowledge source (Atserias
et al., 2004a).

We used the Semeval-2007 Task 09 dataset as
evaluation gold standard (Màrquez et al., 2007). The
dataset contains examples of the 150 most frequent
nouns in the CESS-ECE corpus, manually annotated
with Spanish WordNet synsets. It is split into a train
and test part, and has an “all words” shape i.e. input
consists on sentences, each one having at least one
occurrence of a target noun. We ran the experiment



Method Time
Ppr 26m46
Spr 119m7
Ppr w2w 164m4

Table 4: Elapsed time (in minutes) of the algorithms
when applied to the Senseval-2 dataset.

over the test part (792 instances), and used the train
part for calculating the MFS baseline. We used the
Spanish WordNet as LKB, enriched with eXtended
WordNet relations. It contains 105, 501 nodes and
623, 316 relations. The results in Table 3 are con-
sistent with those for English, with our algorithm
approaching MFS performance. Note that for this
dataset the supervised algorithm could barely im-
prove over the MFS, suggesting that for this partic-
ular dataset MFS is particularly strong.

7 Performance analysis

Table 4 shows the time spent by the different al-
gorithms when applied to the Senseval-2 all words
dataset, using the WNet17 + Xwn as LKB. The
dataset consists on 2473 word instances appearing
on 476 different sentences. The experiments were
done on a computer with four 2.66 Ghz processors
and 16 Gb memory. The table shows that the time
elapsed by the algorithms varies between 30 min-
utes for the Ppr method (which thus disambiguates
circa 82 instances per minute) to almost 3 hours
spent by the Ppr w2w method (circa 15 instances
per minute). The Spr method lies in between, re-
quiring 2 hours for completing the task, but its over-
all performance is well below the PageRank based
Ppr w2w method. Note that the algorithm is coded
in C++ for greater efficiency, and uses the Boost
Graph Library.

Regarding PageRank calculation, we have tried
different numbers of iterations, and analyze the rate
of convergence of the algorithm. Figure 1 depicts
the performance of the Ppr w2w method for differ-
ent iterations of the algorithm. As before, the al-
gorithm is applied over the MCR17 + Xwn LKB,
and evaluated on the Senseval-2 all words dataset.
The algorithm converges very quickly: one sole iter-
ation suffices for achieving a relatively high perfor-
mance, and 20 iterations are enough for achieving
convergence. The figure shows that, depending on
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Figure 1: Rate of convergence of PageRank algorithm
over the MCR17 + Xwn LKB.

the LKB complexity, the user can tune the algorithm
and lower the number of iterations, thus consider-
ably reducing the time required for disambiguation.

8 Conclusions

In this paper we propose a new graph-based method
that uses the knowledge in a LKB (based on Word-
Net) in order to perform unsupervised Word Sense
Disambuation. Our algorithm uses the full graph of
the LKB efficiently, performing better than previous
approaches in English all-words datasets. We also
show that the algorithm can be easily ported to other
languages with good results, with the only require-
ment of having a wordnet. Both for Spanish and En-
glish the algorithm attains performances close to the
MFS.

The algorithm is publicly available5 and can be
applied easily to sense inventories and knowledge
bases different from WordNet. Our analysis shows
that our algorithm is efficient compared to previ-
ously proposed alternatives, and that a good choice
of WordNet versions and relations is fundamental
for good performance.
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