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Abstract 

This paper explores the contribution 
of a broad range of syntactic features 
to WSD: grammatical relations coded 
as the presence of adjuncts/arguments 
in isolation or as subcategorization 
frames, and instantiated grammatical 
relations between words. We have 
tested the performance of syntactic 
features using two different ML 
algorithms (Decision Lists and 
AdaBoost) on the Senseval-2 data. 
Adding syntactic features to a basic 
set of traditional features improves 
performance, especially for AdaBoost. 
In addition, several methods to build 
arbitrarily high accuracy WSD 
systems are also tried, showing that 
syntactic features allow for a precision 
of 86% and a coverage of 26% or 95% 
precision and 8% coverage.  

1. Introduction 

Supervised learning has become the most 
successful paradigm for Word Sense 
Disambiguation (WSD). This kind of algorithms 
follows a two-step process: 
1. Choosing the representation as a set of 

features for the context of occurrence of the 
target word senses.  

2. Applying a Machine Learning (ML) 
algorithm to train on the extracted features 
and tag the target word in the test examples.  

Current WSD systems attain high performances 
for coarse word sense differences (two or three 
senses) if enough training material is available. 
In contrast, the performance for finer-grained 
sense differences (e.g. WordNet senses as used 
in Senseval 2 (Preiss & Yarowsky, 2001)) is far 
from application needs. Nevertheless, recent 
work (Agirre and Martinez, 2001a) shows that it 
is possible to exploit the precision-coverage 
trade-off and build a high precision WSD system 

that tags a limited number of target words with a 
predefined precision.  

This paper explores the contribution of a 
broad set of syntactically motivated features that 
ranges from the presence of complements and 
adjuncts, and the detection of subcategorization 
frames, up to grammatical relations instantiated 
with specific words. The performance of the 
syntactic features is measured in isolation and in 
combination with a basic set of local and topical 
features (as defined in the literature), and using 
two ML algorithms: Decision Lists (Dlist) and 
AdaBoost (Boost). While Dlist does not attempt 
to combine the features, i.e. it takes the strongest 
feature only, Boost tries combinations of 
features and also uses negative evidence, i.e. the 
absence of features. 

Additionally, the role of syntactic features in 
a high-precision WSD system based on the 
precision-coverage trade-off is also investigated.  

The paper is structured as follows. Section 2 
reviews the features previously used in the 
literature. Section 3 defines a basic feature set 
based on the preceding review. Section 4 
presents the syntactic features as defined in our 
work, alongside the parser used. In section 5 the 
two ML algorithms are presented, as well as the 
strategies for the precision-coverage trade-off. 
Section 6 shows the experimental setting and the 
results. Finally section 7 draws the conclusions 
and summarizes further work. 

2. Previous work. 

Yarowsky (1994) defined a basic set of features 
that has been widely used (with some variations) 
by other WSD systems. It consisted on words 
appearing in a window of ±k positions around 
the target and bigrams and trigrams constructed 
with the target word. He used words, lemmas, 
coarse part-of-speech tags and special classes of 
words, such as “Weekday”. These features have 
been used by other approaches, with variations 
such as the size of the window, the distinction 



between open class/closed class words, or the 
pre-selection of significative words to look up in 
the context of the target word.  

Ng (1996) uses a basic set of features similar 
to those defined by Yarowsky, but they also use 
syntactic information: verb-object and subject-
verb relations. The results obtained by the 
syntactic features are poor, and no analysis of 
the features or any reason for the low 
performance is given. 

Stetina et al. (1998) achieve good results with 
syntactic relations as features. They use a 
measure of semantic distance based on WordNet 
to find similar features. The features are 
extracted using a statistical parser (Collins, 
1996), and consist of the head and modifiers of 
each phrase. Unfortunately, they do not provide 
a comparison with a baseline system that would 
only use basic features.  

The Senseval-2 workshop was held in 
Toulouse in July 2001 (Preiss & Yarowsky, 
2001). Most of the supervised systems used only 
a basic set of local and topical features to train 
their ML systems. Regarding syntactic 
information, in the Japanese tasks, several 
groups relied on dependency trees to extract 
features that were used by different models 
(SVM, Bayes, or vector space models). For the 
English tasks, the team from the University of 
Sussex extracted selectional preferences based 
on subject-verb and verb-object relations. The 
John Hopkins team applied syntactic features 
obtained using simple heuristic patterns and 
regular expressions. Finally, WASP-bench used 
finite-state techniques to create a grammatical 
relation database, which was later used in the 
disambiguation process. The papers in the 
proceedings do not provide specific evaluation 
of the syntactic features, and it is difficult to 
derive whether they were really useful or not.  

3. Basic feature set 

We have taken a basic feature set widely used in 
the literature, divided in topical features and 
local features (Agirre & Martinez, 2001b). 

Topical features correspond to open-class 
lemmas that appear in windows of different sizes 
around the target word. In this experiment, we 
used two different window-sizes: 4 lemmas 
around the target (coded as win_lem_4w), and 
the lemmas in the sentence plus the 2 previous 
and 2 following sentences (win_lem_2s). 

Local features include bigrams and trigrams 
(coded as big_, trig_ respectively) that contain 
the target word. An index (+1, -1, 0) is used to 
indicate the position of the target in the bigram 
or trigram, which can be formed by part of 
speech, lemmas or word forms (wf, lem, 
pos). We used TnT (Brants, 2000) for PoS 
tagging.  

For instance, we could extract the following 
features for the target word known from the 
sample sentence below: word form “whole” 
occurring in a 2 sentence window (win_wf_2s), 
the bigram  “known widely” where target is the 
last word (big_wf_+1) and the trigram “RB RB N” 
formed by the two PoS before the target word 
(trig_pos_+1). 

 
“There is nothing in the whole range of human 
experience more widely known and universally …” 

4. Set of Syntactic Features. 

In order to extract syntactic features from the 
tagged examples, we needed a parser that would 
meet the following requirements: free for 
research, able to provide the whole structure 
with named syntactic relations (in contrast to 
shallow parsers), positively evaluated on well-
established corpora, domain independent, and 
fast enough. 

Three parsers fulfilled all the requirements: 
Link Grammar (Sleator and Temperley, 1993), 
Minipar (Lin, 1993) and (Carroll & Briscoe, 
2001). We installed the first two parsers, and 
performed a set of small experiments (John 
Carroll helped out running his own parser). 
Unfortunately, we did not have a comparative 
evaluation to help choosing the best. We 
performed a little comparative test, and all 
parsers looked similar. At this point we chose 
Minipar mainly because it was fast, easy to 
install and the output could be easily processed. 
The choice of the parser did not condition the 
design of the experiments (cf. section 7). 

From the output of the parser, we extracted 
different sets of features. First, we distinguish 
between direct relations (words linked directly 
in the parse tree) and indirect relations (words 
that are two or more dependencies apart in the 
syntax tree, e.g. heads of prepositional modifiers 
of a verb). For example, from “Henry was listed 
on the petition as the mayor's attorney” a direct 
verb-object relation is extracted between listed 



and Henry and the indirect relation “head of a 
modifier prepositional phrase” between listed 
and petition. For each relation we store also its 
inverse. The relations are coded according to the 
Minipar codes (cf. Appendix): 

 
[Henry obj_word listed] 
[listed objI_word Henry] 
[petition mod_Prep_pcomp-n_N_word listed] 
[listed mod_Prep_pcomp-n_NI_word petition] 
 

For instance, in the last relation above, mod_Prep 
indicates that listed has some prepositional 
phrase attached, pcomp-n_N indicates that petition 
is the head of the prepositional phrase, I 
indicates that it is an inverse relation, and word 
that the relation is between words (as opposed to 
relations between lemmas).  

We distinguished two different kinds of 
syntactic relations: instantiated grammatical 
relations (IGR) and grammatical relations (GR). 

4.1. Instantiated Grammatical Relations 
IGRs are coded as [wordsense relation value] 
triples, where the value can be either the word 
form or the lemma. Some examples for the 
target noun “church” are shown below. In the 
first example, a direct relation is extracted for 
the “building” sense, and in the second example 
an indirect relation for the “group of Christians” 
sense. 

 
Example 1: “...Anglican churches have been 

demolished...” 
[Church#2 obj_lem  demolish] 

 
Example 2: “...to whip men into a surrender to a 

particular churh...” 
[Church#1 mod_Prep_pcomp-n_N_lem surrender] 

4.2. Grammatical relations 
This kind of features refers to the grammatical 
relation themselves. In this case, we collect 
bigrams [wordsense relation] and also n-grams 
[wordsense relation1 relation2 relation3 ...]. The 
relations can refer to any argument, adjunct or 
modifier. N-grams are similar to verbal 
subcategorization frames. At present, they have 
been used only for verbs. Minipar provides 
simple subcategorization information in the PoS 
itself, e.g. V_N_N for a verb taking two 
arguments. We have defined 3 types of n-grams: 
• Ngram1: The subcategorization information 

included in the PoS data given by Minipar, 

e.g. V_N_N.  
• Ngram2: The subcategorization information 

in ngram1, filtered by the arguments that 
actually occur in the sentence. 

• Ngram3: Which includes all dependencies in 
the parse tree.  

The three types have been explored in order to 
account for the argument/adjunct distinction, 
which Minipar does not always assign correctly. 
In the first case, Minipar’s judgment is taken 
from the PoS. In the second case the PoS and the 
relations deemed as arguments are combined 
(adjuncts are hopefully filtered out, but some 
arguments might be also discarded). In the third, 
all relations (including adjuncts and arguments) 
are considered. 

In the example below, the ngram1 feature 
indicates that the verb has two arguments (i.e. it 
is transitive), which is an error of Minipar 
probably caused by a gap in the lexicon. The 
ngram2 feature indicates simply that it has a 
subject and no object, and the ngram3 feature 
denotes the presence of the adverbial modifier 
“still”. Ngram2 and ngram3 try to repair possible 
gaps in Minipar’s lexicon. 

 
Example: “His mother was nudging him, but he 
was still falling” 
[Fall#1 ngram1 V_N_N] 
[Fall#1 ngram2 subj] 
[Fall#1 ngram3 amodstill+subj] 

5. ML algorithms. 

In order to measure the contribution of syntactic 
relations, we wanted to test them on several ML 
algorithms. At present we have chosen one 
algorithm which does not combine features 
(Decision Lists) and another which does 
combine features (AdaBoost).  

Despite their simplicity, Decision Lists (Dlist 
for short) as defined in Yarowsky (1994) have 
been shown to be very effective for WSD 
(Kilgarriff & Palmer, 2000). Features are 
weighted with a log-likelihood measure, and 
arranged in an ordered list according to their 
weight. In our case the probabilities have been 
estimated using the maximum likelihood 
estimate, smoothed adding a small constant (0.1) 
when probabilities are zero. Decisions taken 
with negative values were discarded (Agirre & 
Martinez, 2001b).  

AdaBoost (Boost for short) is a general 
method for obtaining a highly accurate 



classification rule by linearly combining many 
weak classifiers, each of which may be only 
moderately accurate (Freund, 1997). In these 
experiments, a generalized version of the Boost 
algorithm has been used, (Schapire, 1999), 
which works with very simple domain 
partitioning weak hypotheses (decision stumps) 
with confidence rated predictions. This 
particular boosting algorithm is able to work 
efficiently in very high dimensional feature 
spaces, and has been applied, with significant 
success, to a number of NLP disambiguation 
tasks, including word sense disambiguation 
(Escudero et al., 2000). Regarding 
parametrization, the smoothing parameter has 
been set to the default value (Schapire, 1999), 
and Boost has been run for a fixed number of 
rounds (200) for each word. No optimization of 
these parameters has been done at a word level. 
When testing, the sense with the highest 
prediction is assigned. 

5.1. Precision vs. coverage trade-off. 
A high-precision WSD system can be obtained 
at the cost of low coverage, preventing the 
system to return an answer in the lowest 
confidence cases. We have tried two methods on 
Dlists, and one method on Boost. 

The first method is based on a decision-
threshold (Dagan and Itai, 1994): the algorithm 
rejects decisions taken when the difference of 
the maximum likelihood among the competing 
senses is not big enough. For this purpose, a 
one-tailed confidence interval was created so we 
could state with confidence 1 - α that the true 
value of the difference measure was bigger than 
a given threshold (named θ). As in (Dagan and 
Itai, 1994), we adjusted the measure to the 
amount of evidence. Different values of θ were 
tested, using a 60% confidence interval. The 
values of θ range from 0 to 4. For more details 
check (Agirre and Martinez, 2001b). 

The second method is based on feature 
selection (Agirre and Martinez, 2001a). Ten-
fold cross validation on the training data for 
each word was used to measure the precision of 
each feature in isolation. Thus, the ML 
algorithm would be used only on the features 
with precision exceeding a given threshold. This 
method has the advantage of being able to set 
the desired precision of the final system.  

In the case of Boost, there was no 
straightforward way to apply the first method. 

The application of the second method did not 
yield satisfactory results, so we turned to 
directly use the support value returned for each 
decision being made. We first applied a 
threshold directly on this support value, i.e. 
discarding decisions made with low support 
values. A second approximation, which is the 
one reported here, applies a threshold over the 
difference in the support for the winning sense 
and the second winning sense. Still, further work 
is needed in order to investigate how Boost 
could discard less-confident results. 

6. Experimental setting and results. 

We used the Senseval-2 data (73 nouns, verbs 
and adjectives), keeping the original training and 
testing sets. In order to measure the contribution 
of syntactic features the following experiments 
were devised (not all ML algorithms were used 
in all experiments, as specified): contribution of 
IGR-type and GR-type relations (Dlist), 
contribution of syntactic features over a 
combination of local and topical features (Dlist, 
Boost), and contribution of syntactic features in 
a high precision system (Dlist, Boost). 

Performance is measured as precision and 
coverage (following the definitions given in 
Senseval-2). We also consider F11 to compare 
the overall performance as it gives the harmonic 
average between precision and recall (where 
recall is in this case precision times the 
coverage). F1 can be used to select the best 
precision/coverage combination (cf. section 6.3). 

6.1. Results for different sets of syntactic 
features (Dlist). 

Table 1 shows the precision, coverage and F1 
figures for each of the grammatical feature sets 
as used by the decision list algorithm. 
Instantiated Grammatical Relations provide very 
good precision, but low coverage. The only 
exceptions are verbs, which get very similar 
precision for both kinds of syntactic relations. 
Grammatical Relations provide lower precision 
but higher coverage. A combination of both 
attains best F1, and is the feature set used in 
subsequent experiments.  

                                                      
1 F1=2*precision*recall/(precision+recall). In this 
case we use recall=precision*coverage. 
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6.3. Precision vs. coverage: high precision 
systems (Dlist, Boost)  

Figure 1 shows the results for the three methods 
to exploit the precision/coverage trade-off in 
order to obtain a high-precision system. For each 
method two sets of features have been used: the 
basic set alone and the combination of both 
basic and syntactic features.  

The figure reveals an interesting behavior for 
different coverage ranges. In the high coverage 
range, Boost on basic+syntactic features attains 
the best performance. In the medium coverage 
area, the feature selection method for Dlist 
obtains the best results, also for basic+syntactic 
features. Finally, in the low coverage and high 
precision area the decision-threshold method for 
Dlist is able to reach precisions in the high 90’s, 
with no profit from syntactic features. 

The two methods to raise precision for Dlists 
are very effective. The decision-threshold 
method obtains constant increase in performance 
up to 93% precision with 7% coverage. The 
feature selection method attains 86% precision 
with 26% coverage using syntactic features, but 
there is no further improvement.  

In this case Dlist is able to obtain extremely 
good accuracy rates (at the cost of low coverage) 
restricting to the use of the most predictive 
features. On the contrary, we have had problems 
in adjusting the AdaBoost algorithm for 
obtaining high precision predictions. 

The figure also shows, for coverage over 
20%, that the syntactic features consistently 
allow for better results, confirming that syntactic 
features improve the results of the basic set. 

perc.) for different feature sets. “+” indicates statistical significance over Basic. 



7. Conclusions and further work. 

This paper shows that syntactic features 
effectively contribute to WSD precision. We 
have extracted syntactic relations using the 
Minipar parser, but the results should be also 
applicable to other parsers with similar 
performance. Two kinds of syntactic features are 
defined: Instantiated Grammatical Relations  
(IGR) between words, and Grammatical 
Relations (GR) coded as the presence of 
adjuncts / arguments in isolation or as 
subcategorization frames.  

The experimental results were tried on the 
Senseval-2 data, comparing two different ML 
algorithms (Dlist and Boost) trained both on a 
basic set of widely used features alone, and on a 
combination of basic and syntactic features. The 
main conclusions are the following: 
• IGR get better precision than GR, but the 

best precision/coverage combination 
(measured with F1) is attained by the 
combination of both. 

• Boost is able to profit from the addition of 
syntactic features, obtaining better results 
than Dlist. This proves that syntactic 
features contain information that is not 
present in other traditional features.  

• Overall the improvement is around two 
points for Boost, with highest increase for 
verbs.  

Several methods to exploit the precision-
coverage trade-off where also tried: 

• The results show that syntactic features 
consistently improve the results on all data 
points except in the very low coverage 
range, confirming the contribution of syntax. 

• The results also show that Dlist are suited to 
build a system with high precision: either a 
precision of 86% and a coverage of 26%, or 
95% precision and 8% coverage. 

Regarding future work, a thorough analysis of 
the quality of each of the syntactic relations 
extracted should be performed. In addition, a 
word-by-word analysis would be interesting, as 
some words might profit from specific syntactic 
features, while others might not. A preliminary 
analysis has been performed in (Agirre & 
Martinez, 2001b). 

Other parsers rather than Minipar could be 
used. In particular, we found out that Minipar 
always returns unambiguous trees, often making 
erroneous attachment decisions. A parser 
returning ambiguous output could be more 
desirable. The results of this paper do not 
depend on the parser used, only on the quality of 
the output, which should be at least as good as 
Minipar. 

Concerning the performance of the algorithm 
as compared to other Senseval 2 systems, it is 
not the best. Getting the best results was not the 
objective of this paper, but to show that syntactic 
features are worth including. We plan to 
improve the pre-processing of our systems, the 
detection of multiword lexical entries, etc. which 
could improve greatly the results. In addition 
there can be a number of factors that could 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: prec./cov. curve for three high precision methods on basic and basic+syntactic features. 
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diminish or disguise the improvement in the 
results: hand-tagging errors, word senses 
missing from training or testing data, biased 
sense distributions, errors in syntactic relations, 
etc. Factor out this “noise” could show the real 
extent of the contribution of syntactic features. 

On the other hand, we are using a high 
number of features. It is well known that many 
ML algorithms have problems to scale to high 
dimensional feature spaces, especially when the 
number of training examples is relatively low (as 
it is the case for Senseval-2 word senses). 
Researching on more careful feature selection 
(which is dependent of the ML algorithm) could 
also improve the contribution of syntactic 
features, and WSD results in general. In 
addition, alternative methods to produce a high 
precision method based on Boost need to be 
explored. 

Finally, the results on high precision WSD 
open the avenue for acquiring further examples 
in a bootstrapping framework.  
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Appendix: main Minipar relations. 

Relation Direct Indirect Description 
by-subj X  Subj. with passives 
C  X clausal complement 
Cn  X nominalized clause 

comp1 X  complement (PP, inf/fin clause) 
of noun 

Desc X  description  
Fc X  finite complement 

I  X see c and fc, dep. between clause 
and main verb 

Mod X  Modifier 
Obj X  Object 
pcomp-c X  clause of pp 
Pcomp-n X  nominal head of pp 
Pnmod X  postnominal modifier. 
Pred X  predicative (can be A or N) 
Sc X  sentential complement 
Subj X  subject 
Vrel X  passive verb modifier of nouns 
For each relation the acronym, whether it is used as a 
direct relation or to construct indirect relations, and a 
short description are provided. 
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