
Syntactic features for high precision Word Sense Disambiguation

David Martínez, Eneko Agirre
IxA NLP Group

University of the Basque Country
Donostia, Spain

{jibmaird,eneko}@si.ehu.es

Lluís Màrquez
TALP Research Center

Polytechnical University of Catalonia
Barcelona, Spain
lluism@lsi.upc.es

Abstract

This paper explores the contribution
of a broad range of syntactic features
to WSD: grammatical relations coded
as the presence of adjuncts/arguments
in isolation or as subcategorization
frames, and instantiated grammatical
relations between words. We have
tested the performance of syntactic
features using two different ML
algorithms (Decision Lists and
AdaBoost) on the Senseval-2 data.
Adding syntactic features to a basic
set of traditional features improves
performance, especially for AdaBoost.
In addition, several methods to build
arbitrarily high accuracy WSD
systems are also tried, showing that
syntactic features allow for a precision
of 86% and a coverage of 26% or 95%
precision and 8% coverage.

1. Introduction

Supervised learning has become the most
successful paradigm for Word Sense
Disambiguation (WSD). This kind of algorithms
follows a two-step process:
1. Choosing the representation as a set of

features for the context of occurrence of the
target word senses.

2. Applying a Machine Learning (ML)
algorithm to train on the extracted features
and tag the target word in the test examples.

Current WSD systems attain high performances
for coarse word sense differences (two or three
senses) if enough training material is available.
In contrast, the performance for finer-grained
sense differences (e.g. WordNet senses as used
in Senseval 2 (Preiss & Yarowsky, 2001)) is far
from application needs. Nevertheless, recent
work (Agirre and Martinez, 2001a) shows that it
is possible to exploit the precision-coverage
trade-off and build a high precision WSD system

that tags a limited number of target words with a
predefined precision.

This paper explores the contribution of a
broad set of syntactically motivated features that
ranges from the presence of complements and
adjuncts, and the detection of subcategorization
frames, up to grammatical relations instantiated
with specific words. The performance of the
syntactic features is measured in isolation and in
combination with a basic set of local and topical
features (as defined in the literature), and using
two ML algorithms: Decision Lists (Dlist) and
AdaBoost (Boost). While Dlist does not attempt
to combine the features, i.e. it takes the strongest
feature only, Boost tries combinations of
features and also uses negative evidence, i.e. the
absence of features.

Additionally, the role of syntactic features in
a high-precision WSD system based on the
precision-coverage trade-off is also investigated.

The paper is structured as follows. Section 2
reviews the features previously used in the
literature. Section 3 defines a basic feature set
based on the preceding review. Section 4
presents the syntactic features as defined in our
work, alongside the parser used. In section 5 the
two ML algorithms are presented, as well as the
strategies for the precision-coverage trade-off.
Section 6 shows the experimental setting and the
results. Finally section 7 draws the conclusions
and summarizes further work.

2. Previous work.

Yarowsky (1994) defined a basic set of features
that has been widely used (with some variations)
by other WSD systems. It consisted on words
appearing in a window of ±k positions around
the target and bigrams and trigrams constructed
with the target word. He used words, lemmas,
coarse part-of-speech tags and special classes of
words, such as “Weekday”. These features have
been used by other approaches, with variations
such as the size of the window, the distinction

between open class/closed class words, or the
pre-selection of significative words to look up in
the context of the target word.

Ng (1996) uses a basic set of features similar
to those defined by Yarowsky, but they also use
syntactic information: verb-object and subject-
verb relations. The results obtained by the
syntactic features are poor, and no analysis of
the features or any reason for the low
performance is given.

Stetina et al. (1998) achieve good results with
syntactic relations as features. They use a
measure of semantic distance based on WordNet
to find similar features. The features are
extracted using a statistical parser (Collins,
1996), and consist of the head and modifiers of
each phrase. Unfortunately, they do not provide
a comparison with a baseline system that would
only use basic features.

The Senseval-2 workshop was held in
Toulouse in July 2001 (Preiss & Yarowsky,
2001). Most of the supervised systems used only
a basic set of local and topical features to train
their ML systems. Regarding syntactic
information, in the Japanese tasks, several
groups relied on dependency trees to extract
features that were used by different models
(SVM, Bayes, or vector space models). For the
English tasks, the team from the University of
Sussex extracted selectional preferences based
on subject-verb and verb-object relations. The
John Hopkins team applied syntactic features
obtained using simple heuristic patterns and
regular expressions. Finally, WASP-bench used
finite-state techniques to create a grammatical
relation database, which was later used in the
disambiguation process. The papers in the
proceedings do not provide specific evaluation
of the syntactic features, and it is difficult to
derive whether they were really useful or not.

3. Basic feature set

We have taken a basic feature set widely used in
the literature, divided in topical features and
local features (Agirre & Martinez, 2001b).

Topical features correspond to open-class
lemmas that appear in windows of different sizes
around the target word. In this experiment, we
used two different window-sizes: 4 lemmas
around the target (coded as win_lem_4w), and
the lemmas in the sentence plus the 2 previous
and 2 following sentences (win_lem_2s).

Local features include bigrams and trigrams
(coded as big_, trig_ respectively) that contain
the target word. An index (+1, -1, 0) is used to
indicate the position of the target in the bigram
or trigram, which can be formed by part of
speech, lemmas or word forms (wf, lem,
pos). We used TnT (Brants, 2000) for PoS
tagging.

For instance, we could extract the following
features for the target word known from the
sample sentence below: word form “whole”
occurring in a 2 sentence window (win_wf_2s),
the bigram “known widely” where target is the
last word (big_wf_+1) and the trigram “RB RB N”
formed by the two PoS before the target word
(trig_pos_+1).

“There is nothing in the whole range of human
experience more widely known and universally …”

4. Set of Syntactic Features.

In order to extract syntactic features from the
tagged examples, we needed a parser that would
meet the following requirements: free for
research, able to provide the whole structure
with named syntactic relations (in contrast to
shallow parsers), positively evaluated on well-
established corpora, domain independent, and
fast enough.

Three parsers fulfilled all the requirements:
Link Grammar (Sleator and Temperley, 1993),
Minipar (Lin, 1993) and (Carroll & Briscoe,
2001). We installed the first two parsers, and
performed a set of small experiments (John
Carroll helped out running his own parser).
Unfortunately, we did not have a comparative
evaluation to help choosing the best. We
performed a little comparative test, and all
parsers looked similar. At this point we chose
Minipar mainly because it was fast, easy to
install and the output could be easily processed.
The choice of the parser did not condition the
design of the experiments (cf. section 7).

From the output of the parser, we extracted
different sets of features. First, we distinguish
between direct relations (words linked directly
in the parse tree) and indirect relations (words
that are two or more dependencies apart in the
syntax tree, e.g. heads of prepositional modifiers
of a verb). For example, from “Henry was listed
on the petition as the mayor's attorney” a direct
verb-object relation is extracted between listed

and Henry and the indirect relation “head of a
modifier prepositional phrase” between listed
and petition. For each relation we store also its
inverse. The relations are coded according to the
Minipar codes (cf. Appendix):

[Henry obj_word listed]
[listed objI_word Henry]
[petition mod_Prep_pcomp-n_N_word listed]
[listed mod_Prep_pcomp-n_NI_word petition]

For instance, in the last relation above, mod_Prep
indicates that listed has some prepositional
phrase attached, pcomp-n_N indicates that petition
is the head of the prepositional phrase, I
indicates that it is an inverse relation, and word
that the relation is between words (as opposed to
relations between lemmas).

We distinguished two different kinds of
syntactic relations: instantiated grammatical
relations (IGR) and grammatical relations (GR).

4.1. Instantiated Grammatical Relations
IGRs are coded as [wordsense relation value]
triples, where the value can be either the word
form or the lemma. Some examples for the
target noun “church” are shown below. In the
first example, a direct relation is extracted for
the “building” sense, and in the second example
an indirect relation for the “group of Christians”
sense.

Example 1: “...Anglican churches have been

demolished...”
[Church#2 obj_lem demolish]

Example 2: “...to whip men into a surrender to a

particular churh...”
[Church#1 mod_Prep_pcomp-n_N_lem surrender]

4.2. Grammatical relations
This kind of features refers to the grammatical
relation themselves. In this case, we collect
bigrams [wordsense relation] and also n-grams
[wordsense relation1 relation2 relation3 ...]. The
relations can refer to any argument, adjunct or
modifier. N-grams are similar to verbal
subcategorization frames. At present, they have
been used only for verbs. Minipar provides
simple subcategorization information in the PoS
itself, e.g. V_N_N for a verb taking two
arguments. We have defined 3 types of n-grams:
• Ngram1: The subcategorization information

included in the PoS data given by Minipar,

e.g. V_N_N.
• Ngram2: The subcategorization information

in ngram1, filtered by the arguments that
actually occur in the sentence.

• Ngram3: Which includes all dependencies in
the parse tree.

The three types have been explored in order to
account for the argument/adjunct distinction,
which Minipar does not always assign correctly.
In the first case, Minipar’s judgment is taken
from the PoS. In the second case the PoS and the
relations deemed as arguments are combined
(adjuncts are hopefully filtered out, but some
arguments might be also discarded). In the third,
all relations (including adjuncts and arguments)
are considered.

In the example below, the ngram1 feature
indicates that the verb has two arguments (i.e. it
is transitive), which is an error of Minipar
probably caused by a gap in the lexicon. The
ngram2 feature indicates simply that it has a
subject and no object, and the ngram3 feature
denotes the presence of the adverbial modifier
“still”. Ngram2 and ngram3 try to repair possible
gaps in Minipar’s lexicon.

Example: “His mother was nudging him, but he
was still falling”
[Fall#1 ngram1 V_N_N]
[Fall#1 ngram2 subj]
[Fall#1 ngram3 amodstill+subj]

5. ML algorithms.

In order to measure the contribution of syntactic
relations, we wanted to test them on several ML
algorithms. At present we have chosen one
algorithm which does not combine features
(Decision Lists) and another which does
combine features (AdaBoost).

Despite their simplicity, Decision Lists (Dlist
for short) as defined in Yarowsky (1994) have
been shown to be very effective for WSD
(Kilgarriff & Palmer, 2000). Features are
weighted with a log-likelihood measure, and
arranged in an ordered list according to their
weight. In our case the probabilities have been
estimated using the maximum likelihood
estimate, smoothed adding a small constant (0.1)
when probabilities are zero. Decisions taken
with negative values were discarded (Agirre &
Martinez, 2001b).

AdaBoost (Boost for short) is a general
method for obtaining a highly accurate

classification rule by linearly combining many
weak classifiers, each of which may be only
moderately accurate (Freund, 1997). In these
experiments, a generalized version of the Boost
algorithm has been used, (Schapire, 1999),
which works with very simple domain
partitioning weak hypotheses (decision stumps)
with confidence rated predictions. This
particular boosting algorithm is able to work
efficiently in very high dimensional feature
spaces, and has been applied, with significant
success, to a number of NLP disambiguation
tasks, including word sense disambiguation
(Escudero et al., 2000). Regarding
parametrization, the smoothing parameter has
been set to the default value (Schapire, 1999),
and Boost has been run for a fixed number of
rounds (200) for each word. No optimization of
these parameters has been done at a word level.
When testing, the sense with the highest
prediction is assigned.

5.1. Precision vs. coverage trade-off.
A high-precision WSD system can be obtained
at the cost of low coverage, preventing the
system to return an answer in the lowest
confidence cases. We have tried two methods on
Dlists, and one method on Boost.

The first method is based on a decision-
threshold (Dagan and Itai, 1994): the algorithm
rejects decisions taken when the difference of
the maximum likelihood among the competing
senses is not big enough. For this purpose, a
one-tailed confidence interval was created so we
could state with confidence 1 - α that the true
value of the difference measure was bigger than
a given threshold (named θ). As in (Dagan and
Itai, 1994), we adjusted the measure to the
amount of evidence. Different values of θ were
tested, using a 60% confidence interval. The
values of θ range from 0 to 4. For more details
check (Agirre and Martinez, 2001b).

The second method is based on feature
selection (Agirre and Martinez, 2001a). Ten-
fold cross validation on the training data for
each word was used to measure the precision of
each feature in isolation. Thus, the ML
algorithm would be used only on the features
with precision exceeding a given threshold. This
method has the advantage of being able to set
the desired precision of the final system.

In the case of Boost, there was no
straightforward way to apply the first method.

The application of the second method did not
yield satisfactory results, so we turned to
directly use the support value returned for each
decision being made. We first applied a
threshold directly on this support value, i.e.
discarding decisions made with low support
values. A second approximation, which is the
one reported here, applies a threshold over the
difference in the support for the winning sense
and the second winning sense. Still, further work
is needed in order to investigate how Boost
could discard less-confident results.

6. Experimental setting and results.

We used the Senseval-2 data (73 nouns, verbs
and adjectives), keeping the original training and
testing sets. In order to measure the contribution
of syntactic features the following experiments
were devised (not all ML algorithms were used
in all experiments, as specified): contribution of
IGR-type and GR-type relations (Dlist),
contribution of syntactic features over a
combination of local and topical features (Dlist,
Boost), and contribution of syntactic features in
a high precision system (Dlist, Boost).

Performance is measured as precision and
coverage (following the definitions given in
Senseval-2). We also consider F11 to compare
the overall performance as it gives the harmonic
average between precision and recall (where
recall is in this case precision times the
coverage). F1 can be used to select the best
precision/coverage combination (cf. section 6.3).

6.1. Results for different sets of syntactic
features (Dlist).

Table 1 shows the precision, coverage and F1
figures for each of the grammatical feature sets
as used by the decision list algorithm.
Instantiated Grammatical Relations provide very
good precision, but low coverage. The only
exceptions are verbs, which get very similar
precision for both kinds of syntactic relations.
Grammatical Relations provide lower precision
but higher coverage. A combination of both
attains best F1, and is the feature set used in
subsequent experiments.

1 F1=2*precision*recall/(precision+recall). In this
case we use recall=precision*coverage.

6.2. Results for diff
features (Dlist,

Both ML algorithms
features, local feat
local+topical features
combination of all f
turn. Table 2 shows
algorithm, feature set

All in all, Boost is
all cases, except for
features get worse res

Regarding the c
features to the basic s
Table 2 show a "+" w
the precision over
significant (McNema
scarcely profit from
features (only signi
attains significant im
basic and syntactic fea

The difference
algorithms could be
Dlist is a conservati
that it only uses the
by the first feature tha
(abstaining if none o
using a combination o
single-feature classife
negative evidence)
positive predictions t
Dlist. Since the feat
covered and given th
accurate, Boost achie
it is a significant
approaching a 100% c

IGR GR All-syntax
P
A
N
V
O

Table 1: pre entage).

 sic + Syntax
PoS MFS D ist Boost

A 59,0 57 ,4 67,7
N 57,1 52 ,3 69,3+
V 40,3 45 ,2+ 53,9+

Ov. 48,2 50 ,7 62,5+
Table 2: F1 results (
oS Prec. Cov. F1 Prec. Cov. F1 Prec. Cov. F1
 81,6 21,8 29,2 70,1 65,4 55,4 70,7 68,9 57,7
 74,6 36,0 38,5 65,4 57,6 47,8 67,6 62,5 52,0
 68,6 32,2 33,4 67,3 41,2 39,2 66,3 52,7 45,4
v. 72,9 31,9 35,2 67,1 52,1 46,0 67,7 59,5 50,4
cision and coverage for different sets of syntactic features (perc

Syntax Local Local+Topical (Basic) Ba

list Boost Dlist Boost Dlist Boost Dl
,7 62,6 66,3 67,5 65,3 66,2 65
,0 60,0 63,6 65,3 63,2 67,9 63
,4 48,5 51,6 50,1 51,0 51,6 51
,4 55,2 59,4 59,3 58,5 60,7 58
erent combinations of
 Boost)
 were used on syntactic
ures, a combination of
 (also called basic), and a
eatures (basic+syntax) in
 the F1 figures for each
and PoS.
 able to outperform Dlist in
 local features. Syntactic
ults than local features.
ontribution of syntactic
et, the last two columns in
henever the difference in

the basic feature set is
r's test). Dlist is able to
 the additional syntactic
ficant for verbs). Boost
provement, showing that
tures are complementary.
between the two ML
explained by the fact that
ve algorithm in the sense
positive information given
t holds in the test example

f them are applicable). By
f the predictions of several
rs (using both positive and
Boost is able to assign
o more test examples than
ure space is more widely
at the classifiers are quite
ves better recall levels and
ly better algorithm for
overage WSD system.

6.3. Precision vs. coverage: high precision
systems (Dlist, Boost)

Figure 1 shows the results for the three methods
to exploit the precision/coverage trade-off in
order to obtain a high-precision system. For each
method two sets of features have been used: the
basic set alone and the combination of both
basic and syntactic features.

The figure reveals an interesting behavior for
different coverage ranges. In the high coverage
range, Boost on basic+syntactic features attains
the best performance. In the medium coverage
area, the feature selection method for Dlist
obtains the best results, also for basic+syntactic
features. Finally, in the low coverage and high
precision area the decision-threshold method for
Dlist is able to reach precisions in the high 90’s,
with no profit from syntactic features.

The two methods to raise precision for Dlists
are very effective. The decision-threshold
method obtains constant increase in performance
up to 93% precision with 7% coverage. The
feature selection method attains 86% precision
with 26% coverage using syntactic features, but
there is no further improvement.

In this case Dlist is able to obtain extremely
good accuracy rates (at the cost of low coverage)
restricting to the use of the most predictive
features. On the contrary, we have had problems
in adjusting the AdaBoost algorithm for
obtaining high precision predictions.

The figure also shows, for coverage over
20%, that the syntactic features consistently
allow for better results, confirming that syntactic
features improve the results of the basic set.

perc.) for different feature sets. “+” indicates statistical significance over Basic.

7. Conclusions and further work.

This paper shows that syntactic features
effectively contribute to WSD precision. We
have extracted syntactic relations using the
Minipar parser, but the results should be also
applicable to other parsers with similar
performance. Two kinds of syntactic features are
defined: Instantiated Grammatical Relations
(IGR) between words, and Grammatical
Relations (GR) coded as the presence of
adjuncts / arguments in isolation or as
subcategorization frames.

The experimental results were tried on the
Senseval-2 data, comparing two different ML
algorithms (Dlist and Boost) trained both on a
basic set of widely used features alone, and on a
combination of basic and syntactic features. The
main conclusions are the following:
• IGR get better precision than GR, but the

best precision/coverage combination
(measured with F1) is attained by the
combination of both.

• Boost is able to profit from the addition of
syntactic features, obtaining better results
than Dlist. This proves that syntactic
features contain information that is not
present in other traditional features.

• Overall the improvement is around two
points for Boost, with highest increase for
verbs.

Several methods to exploit the precision-
coverage trade-off where also tried:

• The results show that syntactic features
consistently improve the results on all data
points except in the very low coverage
range, confirming the contribution of syntax.

• The results also show that Dlist are suited to
build a system with high precision: either a
precision of 86% and a coverage of 26%, or
95% precision and 8% coverage.

Regarding future work, a thorough analysis of
the quality of each of the syntactic relations
extracted should be performed. In addition, a
word-by-word analysis would be interesting, as
some words might profit from specific syntactic
features, while others might not. A preliminary
analysis has been performed in (Agirre &
Martinez, 2001b).

Other parsers rather than Minipar could be
used. In particular, we found out that Minipar
always returns unambiguous trees, often making
erroneous attachment decisions. A parser
returning ambiguous output could be more
desirable. The results of this paper do not
depend on the parser used, only on the quality of
the output, which should be at least as good as
Minipar.

Concerning the performance of the algorithm
as compared to other Senseval 2 systems, it is
not the best. Getting the best results was not the
objective of this paper, but to show that syntactic
features are worth including. We plan to
improve the pre-processing of our systems, the
detection of multiword lexical entries, etc. which
could improve greatly the results. In addition
there can be a number of factors that could

Figure 1: prec./cov. curve for three high precision methods on basic and basic+syntactic features.

0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90
0,95
1,00

0 0,2 0,4 0,6 0,8 1coverage

pr
ec

is
io

n

dlist threshold basic dlist feat.sel. basic boost basic

dlist threshold basic+synt dlist feat.sel. basic+synt boost basic+synt

diminish or disguise the improvement in the
results: hand-tagging errors, word senses
missing from training or testing data, biased
sense distributions, errors in syntactic relations,
etc. Factor out this “noise” could show the real
extent of the contribution of syntactic features.

On the other hand, we are using a high
number of features. It is well known that many
ML algorithms have problems to scale to high
dimensional feature spaces, especially when the
number of training examples is relatively low (as
it is the case for Senseval-2 word senses).
Researching on more careful feature selection
(which is dependent of the ML algorithm) could
also improve the contribution of syntactic
features, and WSD results in general. In
addition, alternative methods to produce a high
precision method based on Boost need to be
explored.

Finally, the results on high precision WSD
open the avenue for acquiring further examples
in a bootstrapping framework.

Acknowledgements
This research has been partially funded by McyT
(Hermes project TIC-2000-0335-C03-03). David
Martinez was funded by the Basque
Government, grant AE-BFI:01.245).

References
Agirre, E. and D. Martinez. 2001a. Decision Lists for

English and Basque. Proceedings of the
SENSEVAL-2 Workshop. In conjunction with
ACL'2001/EACL'2001. Toulouse, France.

Agirre, E. and D. Martinez. 2001b. Analysis of
supervised word sense disambiguation systems. Int.
report LSI 11-2001, available from the authors.

Brants, T. 2000. TnT - A Statistical Part-of-Speech
Tagger. In Proc. of the Sixth Applied Natural
Language Processing Conference, Seattle, WA.

Carroll, J. and E. Briscoe (2001) `High precision
extraction of grammatical relations'. In Proceedings
of the 7th ACL/SIGPARSE International Workshop
on Parsing Technologies, Beijing, China. 78-89.

Collins M. 1996. A new statistical parser based on
bigram lexical dependencies. In Proceedings of the
34th Annual Meeting of the ACL, pages 184-191.

Dagan I., and A. Itai. 1994. Word Sense
Disambiguation Using a Second Language
Monolingual Corpus. Computational Linguistics
20:4, pp. 563--596.

Freund Y. and R. E. Schapire. 1997. A Decision-
Theoretic Generalization of On-line Learning and
an Application to Boosting. Journal of Computer
and System Sciences, 55(1):119--139.

Escudero G., L. Màrquez, G. Rigau. 2000. Boosting
Applied to Word Sense Disambiguation.
Proceedings of the 12th European Conference on
Machine Learning, ECML 2000. Barcelona, Spain.

Kilgarriff, A. and M. Palmer. (eds). 2000. Special
issue on SENSEVAL. Computer and the
Humanities, 34 (1-2).

Lin, D. 1993. Principle Based parsing without
Overgeneration. In 31st Annual Meeting of the
Association for Computational Linguistics.
Columbus, Ohio. pp 112-120.

Ng, H. T. and H. B. Lee. 1996. Integrating Multiple
Knowledge Sources to Disambiguate Word Sense:
An Exemplar-based Approach. Proceedings of the
34th Annual Meeting of the Association for
Computational Linguistics.

Preiss, J. and D. Yarowsky. 2001. Proc. of the
Second Intl. Workshop on Evaluating Word Sense
Disambiguation Systems (Senseval 2). In conj. with
ACL'2001/EACL'2001. Toulouse, France.

Schapire, R. E. and Y. Singer. 1999. Improved
Boosting Algorithms Using Confidence-rated
Predictions. Machine Learning, 37(3):297--336.

Sleator, D. and D. Temperley. 1993. Parsing English
with a Link Grammar. Third International
Workshop on Parsing Technologies.

Stetina J., S. Kurohashi, M. Nagao. 1998. General
Word Sense Disambiguation Method Based on a
Full Sentential Context. In Usage of WordNet in
Natural Language Processing , Proceedings of
COLING-ACL Workshop. Montreal (Canada).

Yarowsky, D. 1994. Decision Lists for Lexical
Ambiguity Resolution: Application to Accent
Restoration in Spanish and French. Proceedings of
the 32nd Annual Meeting of the Association for
Computational Linguistics, pp. 88--95.

Appendix: main Minipar relations.

Relation Direct Indirect Description
by-subj X Subj. with passives
C X clausal complement
Cn X nominalized clause

comp1 X complement (PP, inf/fin clause)
of noun

Desc X description
Fc X finite complement

I X see c and fc, dep. between clause
and main verb

Mod X Modifier
Obj X Object
pcomp-c X clause of pp
Pcomp-n X nominal head of pp
Pnmod X postnominal modifier.
Pred X predicative (can be A or N)
Sc X sentential complement
Subj X subject
Vrel X passive verb modifier of nouns
For each relation the acronym, whether it is used as a
direct relation or to construct indirect relations, and a
short description are provided.

http://www.icl.pku.edu.cn/iwpt2001/
http://www.icl.pku.edu.cn/iwpt2001/

	Abstract
	Acknowledgements
	References

