Proiektua

Helburuak

Partehartzaileak

Argitalpenak

Baliabideak eta tresnak

Erreferentziak

intranet

EU - EN - ES

 

    References

  • Agirre, E., Soroa, A. y Stevenson, M. 2010. Graph -based word sense disambiguation of biomedical docu ments. Bioinformatics, 26(22):2889-2896

  • Alegria, I., Aranberri, N., Fresno, V., Gamallo, P. , Padró, L., San Vicente, I., Turmo, J. y Zubiaga, A. 2013. Introducción a la Tarea CompartidaTweet-Norm 2013: Normalización Léxica de Tuits en Español, pp. 1-9

  • Arnold, C.W., Bui, A.A.T., Morioka, C., El-Saden, S . y Kangarloo, H. (2007). Informatics in Radiology: A Prototype Web-based Reporting System for Onsite-Offsite Clinici an Communication. RadioGraphics, 27(4): 1201-1211

  • Aronson, A. 2001. Effective mapping of biomedical t ext to the UMLS Metathesaurus: the MetaMap program. Proceedings of American Medical Informatics Associati on Symposium (AMIA), pp. 17-21

  • Berrocal, J.L.A., Figuerola, C.G. y Zazo Rodríguez , A. 2013. REINA at RepLab2013 Topic Detection Task: Community Detection. CLEF 2013 Labs and Workshops Notebook Pap ers

  • Bong, S. y Hwang, K. 2011. Keyphrase extraction in biomedical publications using mesh and intraphrase word co- occurrence information. Proceedings of the ACM fifth international workshop on Data and text mining in biomedical informatics, pp. 63-66

  • Carmel, D., Roitman, H. y Zwerdling, N. 2009. Enha ncing Cluster Labeling Using Wikipedia. Proceedings o f the 32Nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.139-146

  • Chang, J.T., Sch tze, H. y Altman, R.B. 2002. Creating an Online Dict ionary of Abbreviations from MEDLINE. Journal of the American Medical Informatics Association (JA MIA),9(6):612-20 ? Chen, H. y Sharp, B.M. 2004. Content-rich biologic al network constructed by mining PubMed abstracts. BMC Bioinformatics, 5

  • Chi, EC., Sager N., Tick, LJ., Lyman, MS. 1983. Re lational data base modelling of free-text medical n arrative. Med Inform, 8(3):209-23.  11 Convocatoria de ayudas a Proyectos de I+D+i «RETOS INVESTIGACIÓN» PROGRAMA DE I+D+i ORIENTADA A LOS RETOS DE LA SOCIEDAD 2013 Subdirección General de Proyectos de Investigación MEMORIA CIENTÍFICO-TÉCNICA DE PROYECTOS COORDINADOS ? Friedman, C., Alderson, PO., Austin, JH., Cimino, JJ . y Johnson, SB. 1994. A general natural language tex t processor for clinical radiology. Journal of the American Me dical Informatics Association (JAMIA),1(2):161-174

  • Frijters, R., van Vugt, M., Smeets, R., van Schaik , R.C., de Vlieg, J. y Alkema, W. 2010. Literature m ining for the discovery of hidden connections between drugs, gene s and diseases. PLoS Computational Biology, 6(9)

  • Grishman, R. Information Extraction: Capabilities and Challenges. Notes prepared for the 2012 Intern ational Winter School in Language and Speech Technologies, 2012, Ro vira i Virgili University, Tarragona, Spain

  • Han, B. y Baldwin, T. 2011. Lexical normalisation of short tweets messages: makn sens a# twitter. Pro ceedings of the ACL, pp. 368-378

  • Holmes, A.B., Hawson, A., Liu, F., Friedman, C., Khi abanian, H. y Rabadan, R. 2011. Discovering disease associations by integrating electronic clinical data and medical literature. PloS one, 6(6)

  • Huang, Y., Lowe, H., Klein, D. y Cucina, R. 2005. Improved Identification of Noun Phrases in Clinical Radiology Reports Using a High-Performance Statistical Natural Language Parser Augmented with the UMLS Specialist Le xicon. Journal of the American Medical Informatics Associati on (JAMIA),12:275 85

  • Li, Q. y Wu, Y.B. 2006. Identifying important con cepts from medical documents. J. of Biomedical Info rmatics, 39(6):668-679

  • Li, X., Chen, J., Zaiane, O. 2013. Text Document Topical Recursive Clustering and Automatic Labeling of a Hierarchy of Document Clusters. Advances in Knowledge Discovery and Data Mining. LNCS, 7819, pp 197-208

  • Luo, G., Tang, C., Yang, H. y Wei, X. 2008. MedSea rch: a specialized search engine for medical inform ation retrieval. Proceedings of the 17th ACM conference on Informatio n and knowledge management, pp. 143-152

  • Martinez-Romo, J., Araujo, J., Borge-Holthoefer, J ., Arenas, A., Capitán, J.A. y Cuesta, J.A. 2011. Di sentangling categorical relationships through a graph of co-occ urrences. Phys. Rev. E, 84:046108

  • Montalvo, S., Martínez, R., Fresno, V., y Delgado , A. 2014. Exploiting Named Entities for Bilingual New s Clustering". Journal of the American Society for Information Scien ce and Technology. In press

  • Nadkarni, P., Chen, R., Brandt, C. 2001. UMLS conc ept indexing for production databases: a feasibilit y study. Journal of the American Medical Informatics Association (JA MIA),8:80 91

  • Park, Y. y Byrd, R.J.. 2001. Hybrid Text Mining f or Finding Abbreviations and Their Definitions. Proc eedings of the Conference on Empirical Methods in Natural Language Processing, pp. 126- 133

  • Pérez-Iglesias, J., Fresno, V. y Pérez-Agüera, J.R. 2008. FuzzyFresh: A Fuzzy Logic Approach to the Rank ing of Structured Documents. Web Intelligence, 755-758

  • Plaza, L., Stevenson, M. y Díaz, A. 2012. Resolvin g ambiguity in biomedical text to improve summariza tion. Inf. Process. Manage., 48(4):755-766

  • Pustejovsky, J., Castaño, J., Cochran, B., Kotecki, M. y Morrell, M. 2001. Automation Extraction of Acron ym-Meaning Pairs from Medline Databases. Medinfo,10: 371-375

  • Pustejovsky, J., Castaño, J., Cochran, B., Kotecki , M., Morrell, M. y Rumshisky, A. 2001. Extraction a nd Disambiguation of Acronym-Meaning Pairs in Medline. Unpublished manuscript

  • Robertson, S., Zaragoza, H. y Taylor, M. 2004. Si mple bm25 ex- tension to multiple weighted fields. Proceedings of the thirteenth ACM international conference on Informati on and knowledge management, pp. 42-49. 12 Convocatoria de ayudas a Proyectos de I+D+i «RETOS INVESTIGACIÓN» PROGRAMA DE I+D+i ORIENTADA A LOS RETOS DE LA SOCIEDAD 2013 Subdirección General de Proyectos de Investigación MEMORIA CIENTÍFICO-TÉCNICA DE PROYECTOS COORDINADOS ? Schlieder, T. y Meuss, H. 2002. Querying and ran king XML documents. JASIST, 53(6):489-503

  • Schwartz, A.S. y Hearst, M.A. 2003. A simple algorit hm for identifying abbreviation definitions in biom edical text. Proceedings of the 8th Pacific Symposium on Biocomputin g, pp. 451 462

  • Segura-Bedmar, I., Martínez, P. y de Pablo-Sánchez, C. 2011. Using a Shallow Linguistic Kernel for Drug -Drug Interaction Extraction. Journal of Biomedical Inform atics, 44(5):789-804

  • Sinha, U. y Kangarloo, H. 2002. Principal Component Analysis for Content-based Image Retrieval. RadioG raphics, 22(5): 1271-1289

  • Song, M., Bleik, S., Yu, H. y Han, W. 2011. Extractin g biomedical concepts from fulltext by relative imp ortance in a graph model. Proceedings of the 2011 IEEE Internationa l Conference on Bioinformatics and Biomedicine Worksho ps, pp. 586-593

  • Spina, D., Carrillo-de-Albornoz, J., Martín, T., Am igó, E., Gonzalo, J., y Giner, F. 2013. UNED Online Reputation Monitoring Team at RepLab 2013. CLEF 2013 Labs and Workshops Notebook Papers

  • Taira, RK., Soderland, SG. y Jakobovits, RM. 2001. Automatic structuring of radiology free-text report s. RadioGraphics,21:237 245

  • Thomas, B.J., Ouellette, H., Halpern, E.F. y Rose nthal, D.I. 2005. Automated Computer-Assisted Categ orization of Radiology Reports. Am. J. Roentgenol., 184(2): 687 - 690

  • Van Eck, N.J. y Waltman, L. 2011. Text mining and vi sualization using VOSviewer. ISSI Newsletter, 7(3),50 -54

  • Xu, T. y Oard, D. 2011. Wikipedia-based Topic Clus tering for Microblogs. JASIST, 8(1):1-10

  • Yu, H., Hripcsak, G.y Friedman, C. 2002. Mapping abbreviations to full forms in biomedical articles. Journal of the American Medical Informatics Association (JAMIA), 9(3): 262-272

  • Zhou, X., Han, H., Chankai, I., Prestrud, A. y Bro oks, A. 2006. Approaches to text mining for clinica l medical records. Proceedings of the ACM Symposium on Applied Computing (SAC 2006), pp. 235-239.

Pil-Pilean



IXA taldea - EHU-UPV

IXA-ko berri gehiago ikusi