Testuen analisia

Humanizing AI with language technology (HumanAIze)

The "Humanizing AI with Language Technology (HumanAIze)" project seeks to enhance Large Language Models (LLMs) to make them more human, reliable, and ethical by addressing weaknesses such as bias, cultural understanding, and reliability. Six research centers bring their expertise in areas such as multilingualism, anonymization, verification, and evaluation. A key approach is "reliable by design," implementing ethical and legal principles, data governance, human feedback, and sustainability.

EFICIENCIA DE MODELOS LLM PARA INDUSTRIAS ESTRATÉGICAS (EMIE)

HAZITEK ESTRATEGIKOA. EMIE. RVCTI AZPIKONTRATAZIOA LLMak industrian duten erabilera ebaluatzeko proiektua. RVCTI azpikontratazioa HAZITEK estrategiko batean.

KATEDRA - ELHUYAR

KATEDRA: Adimen Artifizialaren eta Hizkuntzaren Teknologiaren arloan zerbitzuak ematea - ELHUYAR

Katedra - MULTIVERSE

KATEDRA: Adimen Artifizialaren eta Hizkuntzaren Teknologiaren arloan zerbitzuak ematea - MULTIVERSE

Katedra - TECNALIA

KATEDRA: Adimen Artifizialaren eta Hizkuntzaren Teknologiaren arloan zerbitzuak ematea - TECNALIA

Scaling LLM Alignment for Low Resource Languages

The development of operational multilingual Large Language Models (LLMs) typically involves resource-intensive stages of pretraining, instruction tuning, and alignment. Crucially, high-quality instruction and preference datasets are essential for effective alignment, yet their creation necessitates substantial human labor for each target language, posing a significant barrier to inclusivity and democratization of AI, especially for languages beyond English.

Orriak

RSS - Testuen analisia-rako harpidetza egin